Project description:The electrochemical reduction of CO2 offers an elegant solution to the current energy crisis and carbon emission issues, but the catalytic efficiency for CO2 reduction is seriously restricted by the inherent scaling relations between the adsorption energies of intermediates. Herein, by combining the concept of single-atom catalysts and multiple active sites, we design heteronuclear dual-atom catalysts to break through the stubborn restriction of scaling relations on catalytic activity. Twenty-one kinds of heteronuclear transition-metal dimers are embedded in monolayer C2N as potential dual-atom catalysts. First-principles calculations reveal that by adjusting the components of dimers, the two metal atoms play the role of carbon adsorption sites and oxygen adsorption sites respectively, which results in the decoupling of adsorption energies of key intermediates. Free energy profiles demonstrate that CO2 can be efficiently reduced to CH4 on CuCr/C2N and CuMn/C2N with low limiting potentials of -0.37 V and -0.32 V, respectively. This study suggests that the introduction of multiple active sites into porous two-dimensional materials would provide a great possibility for breaking scaling relations to achieve efficient multi-intermediate electrocatalytic reactions.
Project description:Electrocatalytic CO2 reduction to generate multicarbon products is of interest for applications in artificial photosynthetic schemes. This is a particularly attractive goal for CO2 reduction by copper electrodes, where a broad range of hydrocarbon products can be generated but where selectivity for C-C coupled products relative to CH4 and H2 remains an impediment. Herein we report a simple yet highly selective catalytic system for CO2 reduction to C?2 hydrocarbons on a polycrystalline Cu electrode in bicarbonate aqueous solution that uses N-substituted pyridinium additives. Selectivities of 70-80% for C2 and C3 products with a hydrocarbon ratio of C?2/CH4 significantly greater than 100 have been observed with several additives. 13C-labeling studies verify CO2 to be the sole carbon source in the C?2 hydrocarbons produced. Upon electroreduction, the N-substituted pyridinium additives lead to film deposition on the Cu electrode, identified in one case as the reductive coupling product of N-arylpyridinium. Product selectivity can also be tuned from C?2 species to H2 (?90%) while suppressing methane with certain N-heterocyclic additives.
Project description:Electrocatalytic CO2 reduction to value-added hydrocarbon products using metallic copper (Cu) catalysts is a potentially sustainable approach to facilitate carbon neutrality. However, Cu metal suffers from unavoidable and uncontrollable surface reconstruction during electrocatalysis, which can have either adverse or beneficial effects on its electrocatalytic performance. In a break from the current catalyst design path, we propose a strategy guiding the reconstruction process in a favorable direction to improve the performance. Typically, the controlled surface reconstruction is facilely realized using an electrolyte additive, ethylenediamine tetramethylenephosphonic acid, to substantially promote CO2 electroreduction to CH4 for commercial polycrystalline Cu. As a result, a stable CH4 Faradaic efficiency of 64% with a partial current density of 192 mA cm-2, thus enabling an impressive CO2-to-CH4 conversion rate of 0.25 µmol cm-2 s-1, is achieved in an alkaline flow cell. We believe our study will promote the exploration of electrochemical reconstruction and provide a promising route for the discovery of high-performance electrocatalysts.
Project description:The direct utilization of solar energy to convert CO2 into renewable chemicals remains a challenge. One essential difficulty is the development of efficient and inexpensive light-absorbers. Here we show a series of aminoanthraquinone organic dyes to promote the efficiency for visible light-driven CO2 reduction to CO when coupled with an Fe porphyrin catalyst. Importantly, high turnover numbers can be obtained for both the photosensitizer and the catalyst, which has not been achieved in current light-driven systems. Structure-function study performed with substituents having distinct electronic effects reveals that the built-in donor-acceptor property of the photosensitizer significantly promotes the photocatalytic activity. We anticipate this study gives insight into the continued development of advanced photocatalysts for solar energy conversion.
Project description:It remains a real challenge to control the selectivity of the electrocatalytic CO2 reduction (eCO2R) reaction to valuable chemicals and fuels. Most of the electrocatalysts are made of non-renewable metal resources, which hampers their large-scale implementation. Here, we report the preparation of bimetallic copper-lead (CuPb) electrocatalysts from industrial metallurgical waste. The metal ions were extracted from the metallurgical waste through simple chemical treatment with ammonium chloride, and CuxPby electrocatalysts with tunable compositions were fabricated through electrodeposition at varying cathodic potentials. X-ray spectroscopy techniques showed that the pristine electrocatalysts consist of Cu0, Cu1+ and Pb2+ domains, and no evidence for alloy formation was found. We found a volcano-shape relationship between eCO2R selectivity toward two electron products, such as CO, and the elemental ratio of Cu and Pb. A maximum Faradaic efficiency towards CO was found for Cu9.00Pb1.00, which was four times higher than that of pure Cu, under the same electrocatalytic conditions. In situ Raman spectroscopy revealed that the optimal amount of Pb effectively improved the reducibility of the pristine Cu1+ and Pb2+ domains to metallic Cu and Pb, which boosted the selectivity towards CO by synergistic effects. This work provides a framework of thinking to design and tune the selectivity of bimetallic electrocatalysts for CO2 reduction through valorization of metallurgical waste.
Project description:Electrochemical conversion of CO2 into value-added chemicals continues to draw interest in renewable energy applications. Although many metal catalysts are active in the CO2 reduction reaction (CO2RR), their reactivity and selectivity are nonetheless hindered by the competing hydrogen evolution reaction (HER). The competition of the HER and CO2RR stems from the energy scaling relationship between their reaction intermediates. Herein, we predict that bimetallic monolayer electrocatalysts (BMEs) - a monolayer of transition metals on top of extended metal substrates - could produce dual-functional active sites that circumvent the scaling relationship between the adsorption energies of HER and CO2RR intermediates. The antibonding interaction between the adsorbed H and the metal substrate is revealed to be responsible for circumventing the scaling relationship. Based on extensive density functional theory (DFT) calculations, we identify 11 BMEs which are highly active and selective toward the formation of formic acid with a much suppressed HER. The H-substrate antibonding interaction also leads to superior CO2RR performance on monolayer-coated penta-twinned nanowires.
Project description:Electrochemical reduction of CO2 into carbon-based products using excess clean electricity is a compelling method for producing sustainable fuels while lowering CO2 emissions. Previous electrolytic CO2 reduction studies all involve dioxygen production at the anode, yet this anodic reaction requires a large overpotential and yields a product bearing no economic value. We report here that the cathodic reduction of CO2 to CO can occur in tandem with the anodic oxidation of organic substrates that bear higher economic value than dioxygen. This claim is demonstrated by 3 h of sustained electrolytic conversion of CO2 into CO at a copper-indium cathode with a current density of 3.7 mA cm-2 and Faradaic efficiency of >70%, and the concomitant oxidation of an alcohol at a platinum anode with >75% yield. These results were tested for four alcohols representing different classes of alcohols and demonstrate electrolytic reduction and oxidative chemistry that form higher-valued carbon-based products at both electrodes.
Project description:The sources and nature of organic carbon on Mars have been a subject of intense research. Steele et al. (2012) showed that 10 martian meteorites contain macromolecular carbon phases contained within pyroxene- and olivine-hosted melt inclusions. Here, we show that martian meteorites Tissint, Nakhla, and NWA 1950 have an inventory of organic carbon species associated with fluid-mineral reactions that are remarkably consistent with those detected by the Mars Science Laboratory (MSL) mission. We advance the hypothesis that interactions among spinel-group minerals, sulfides, and a brine enable the electrochemical reduction of aqueous CO2 to organic molecules. Although documented here in martian samples, a similar process likely occurs wherever igneous rocks containing spinel-group minerals and/or sulfides encounter brines.
Project description:The grain boundaries (GBs) in copper (Cu) electrocatalysts have been suggested as active sites for CO2 electroreduction to ethanol. Nevertheless, the mechanisms are still elusive. Herein, we describe how GBs tune the activity and selectivity for ethanol on two representative Cu-GB models, namely Cu∑3/(111) GB and Cu∑5/(100) GB, using joint first-principles calculations and experiments. The unique geometric structures on the GBs facilitate the adsorption of bidentate intermediates, *COOH and *CHO, which are crucial for CO2 activation and CO protonation. The decreased CO-CHO coupling barriers on the GBs can be rationalized via kinetics analysis. Furthermore, when introducing GBs into Cu (100), the product is selectively switched from ethylene to ethanol, due to the stabilization effect for *CH3CHO and inapposite geometric structure for *O adsorption, which are validated by experimental trends. An overall 12.5 A current and a single-pass conversion of 5.18% for ethanol can be achieved over the synthesized Cu-GB catalyst by scaling up the electrode into a 25 cm2 membrane electrode assembly system.
Project description:CO2 reduction through artificial photosynthesis represents a prominent strategy toward the conversion of solar energy into fuels or useful chemical feedstocks. In such configuration, designing highly efficient chromophores comprising earth-abundant elements is essential for both light harvesting and electron transfer. Herein, we report that a copper purpurin complex bearing an additional redox-active center in natural organic chromophores is capable to shift the reduction potential 540 mV more negative than its organic dye component. When this copper photosensitizer is employed with an iron porphyrin as the catalyst and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the sacrificial reductant, the system achieves over 16100 turnover number of CO from CO2 with a 95% selectivity (CO vs H2) under visible-light irradiation, which is among the highest reported for a homogeneous noble metal-free system. This work may open up an effective approach for the rational design of highly efficient chromophores in artificial photosynthesis.