Project description:ObjectivesThe immunogenicity and safety of the Pfizer-BioNTech BNT162b2 mRNA vaccine in people living with human immunodeficiency virus type 1 (PLWH) are unknown. We aimed to assess the immunogenicity and safety of this vaccine in PLWH.MethodsIn this prospective open study, we enrolled 143 PLWH, aged ≥18 years, who attended our clinic and 261 immunocompetent health-care workers (HCWs). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) IgG and neutralizing antibodies were measured. Adverse events, viral load and CD4 cell counts were monitored.ResultsAt a median of 18 days (interquartile range 14-21 days) after the second dose, anti-RBD-IgG was positive in 139/141 (98%) PLWH. Among HCWs, 258/261 (98.9%) developed anti-RBD-IgG at a median of 26 days (interquartile range 24-27 days) after the second dose. Following the second dose, immune sera neutralized SARS-CoV-2 pseudo-virus in 97% and 98% of PLWH and HCWs, respectively. Adverse events were reported in 60% of PLWH, mainly pain at the injection site, fatigue and headache. AIDS-related adverse events were not reported. Human immunodeficiency virus load increased in 3/143 (2%) patients from <40 copies/mL to ≤100 copies/mL. CD4+ T-cell count decreased from a geometric mean of 700 cells/μL (95% CI 648-757 cells/μL) to 633.8 cells/μL (95% CI 588-683 cells/μL) (p < 0.01).ConclusionsBNT162b2 mRNA vaccine appears immunogenic and safe in PLWH who are on antiretroviral therapy with unsuppressed CD4 count and suppressed viral load.
Project description:It is of urgent need to understand the safety and effectiveness of novel coronavirus (COVID-19)-inactivated vaccine in patients with hyperlipidemia (HLD). However, data on the safety and immune response of SARS-CoV-2-inactivated vaccine in HLD patients are limited. In this prospective study, 105 patients with HLD and 74 healthy controls (HCs) were selected. Within 16-168 days after inoculation-inactivated vaccine, the anti-receptor-binding domain (RBD) IgG and SARS-CoV-2 neutralizing antibodies (NAbs) were evaluated, respectively. Flow cytometry was performed to evaluate RBD-specific B cells and memory B cells. There was no significant difference between HLD patients and HCs in adverse events (AEs) within 7 days after vaccination, and no serious AEs occurred. The seropositivity rates and titers of two Abs (anti-RBD IgG and CoV-2 NAbs) were lower in HLD patients than in HCs (all, p < 0.05). HLD showed significantly lower frequencies of RBD-specific B cells than HCs (p = 0.040). However, in high cholesterol, high triglyceride, mixed (MiX), and lipid control (HC) subgroups, there was no significant difference in the seropositivity rates and titers of the both Abs. Through mixed factor analysis shows that days between the second dose and sample collection/antibody measurement were associated with the lower anti-RBD IgG antibody levels. In conclusion, inactivated COVID-19 vaccine is safe and well tolerated for HLD patients, but the humoral immune may be limited.
Project description:The immunogenicity and safety of vaccines against coronavirus disease 2019 (COVID-19) remain unknown in patients with a history of pulmonary tuberculosis (OPTB). Therefore, the safety and effectiveness of inactivated vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were assessed in patients with a history of PTB. The study cohort included 106 healthy controls and 93 adult patients with OPTB who received a two-dose vaccination. The study period was 21 to 105 days. Concentrations of antibodies (Abs) against receptor-binding domain (RBD) IgG and SARS-CoV-2 neutralizing Abs (NAbs) were measured, in addition to the frequencies of SARS-CoV-2-specific B and a portion T cells. The incidence of adverse events was similar between the OPTB patients and healthy controls. No severe adverse events occurred. Concentrations of Abs against RBD-IgG and CoV-2 neutralizing Abs in addition to the frequencies of RBD-specific memory B cells proportions were lower in OPTB patients than the healthy controls (all, p < 0.05), while the frequencies of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4+) cells were higher (p = 0.023). There was no obvious correlation between age and blood concentrations of Abs against RBD-IgG and CoV-2 neutralizing Abs, while immune responses were similar in the fibrosis and calcification groups. The period of time following full-course vaccination and lymphocyte counts were associated to anti-RBD-IgG responses. Inactivated COVID-19 vaccinations were well tolerated in OPTB patients, although immunogenicity was limited in this population. This study has been registered at ClinicalTrials.gov (NCT05043246).
Project description:The changes in the severe acute respiratory syndrome coronavirus 2 and the tapering of immunity after vaccination have propelled the need for a booster dose vaccine. We aim to evaluate B and T cell immunogenicity and reactogenicity of mRNA-1273 COVID-19 vaccine (100 µg) as a third booster dose after receiving either two doses of inactivated COVID-19 vaccine (CoronaVac) or two doses of viral vector vaccine (AZD1222) in adults not previously infected with COVID-19. The anti-receptor-binding-domain IgG (anti-RBD IgG), surrogate virus neutralization test (sVNT) against the Delta variant, and Interferon-Gamma (IFN-γ) level were measured at baseline, day (D)14 and D90 after vaccination. In D14 and D90, the geometric means of sVNT were significantly increased to 99.4% and 94.5% inhibition in CoronaVac, respectively, whereas AZD1222 showed inhibition of 99.1% and 93%, respectively. Anti-RBD IgG levels were 61,249 to 9235 AU/mL in CoronaVac and 38,777 to 5877 AU/mL in AZD1222 after D14 and D90 vaccination. Increasing median frequencies of S1-specific T cell response by IFN-γ concentration were also elevated in D14 and were not significantly different between CoronaVac (107.8-2035.4 mIU/mL) and AZD1222 (282.5-2001.2 mIU/mL). This study provides evidence for the high immunogenicity of the mRNA-1273 booster after two doses of CoronaVac or AZD1222 in the Thai population.
Project description:Several COVID-19 vaccines, some more efficacious than others, are now available and deployed, including multiple mRNA- and viral vector-based vaccines. With the focus on creating cost-effective solutions that can reach the low- and medium- income world, GreenLight Biosciences has developed an mRNA vaccine candidate, GLB-COV2-043, encoding for the full-length SARS-CoV-2 Wuhan wild-type spike protein. In pre-clinical studies in mice, GLB-COV2-043 induced robust antigen-specific binding and virus-neutralizing antibody responses targeting homologous and heterologous SARS-CoV-2 variants and a TH1-biased immune response. Boosting mice with monovalent or bivalent mRNA-LNPs provided rapid recall and long-lasting neutralizing antibody titers, an increase in antibody avidity and breadth that was held over time and generation of antigen-specific memory B- and T- cells. In hamsters, vaccination with GLB-COV2-043 led to lower viral loads, reduced incidence of SARS-CoV-2-related microscopic findings in lungs, and protection against weight loss after heterologous challenge with Omicron BA.1 live virus. Altogether, these data indicate that GLB-COV2-043 mRNA-LNP vaccine candidate elicits robust protective humoral and cellular immune responses and establishes our mRNA-LNP platform for subsequent clinical evaluations.
Project description:BackgroundThe immunogenicity of a two-dose mRNA COVID-19 vaccine regimen is low in kidney transplant (KT) recipients. Here, we provide a thorough assessment of the immunogenicity of a three-dose COVID-19 vaccine regimen in this population.MethodsWe performed a prospective longitudinal study in sixty-one KT recipients given three doses of the BNT162b2 COVID-19 vaccine. We performed semi-structured pharmacovigilance interviews and monitored donor-specific antibodies and kidney function. We compared levels of anti-spike IgG, pseudo-neutralization activity against vaccine homologous and heterologous variants, frequency of spike-specific interferon (IFN)-γ-secreting cells, and antigen-induced cytokine production 28 days after the second and third doses.FindingsReactions to vaccine were mild. One patient developed donor-specific anti-HLA antibodies after the second dose which could be explained by non-adherence to immunosuppressive therapy. Spike-specific IgG seroconversion raised from 44·3% (n=27) after the second dose to 62·3% (n=38) after the third dose (p<0·05). The mean level of spike-specific IgG increased from 1620 (SD, 3460) to 8772 (SD, 16733) AU/ml (p<0·0001). Serum neutralizing activity increased after the third dose for all variants of concern tested including the Delta variant (p<0·0001). The frequency of spike-specific IFN-γ-secreting cells increased from 19·9 (SD, 56·0) to 64·0 (SD, 76·8) cells/million PBMCs after the third dose (p<0·0001). A significant increase in IFN-γ responses was also observed in patients who remained seronegative after three doses (p<0·0001).InterpretationA third dose of the BNT162b2 vaccine increases both cross-variant neutralizing antibody and cellular responses in KT recipients with an acceptable tolerability profile.FundingNice University Hospital, University Cote d'Azur.
Project description:In this ongoing study, substantially increased ancestral SARS-CoV-2 neutralizing responses were observed 1 month after a third 10-µg BNT162b2 dose given to 5 to 11-year olds versus neutralizing responses post-dose 2. After dose 3, increased neutralizing responses against Omicron BA.1 and BA.4/BA.5 strains were also observed. The safety/tolerability profile was acceptable. (NCT04816643).
Project description:BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and the resulting disease, coronavirus disease 2019 (Covid-19), have spread to millions of persons worldwide. Multiple vaccine candidates are under development, but no vaccine is currently available. Interim safety and immunogenicity data about the vaccine candidate BNT162b1 in younger adults have been reported previously from trials in Germany and the United States.MethodsIn an ongoing, placebo-controlled, observer-blinded, dose-escalation, phase 1 trial conducted in the United States, we randomly assigned healthy adults 18 to 55 years of age and those 65 to 85 years of age to receive either placebo or one of two lipid nanoparticle-formulated, nucleoside-modified RNA vaccine candidates: BNT162b1, which encodes a secreted trimerized SARS-CoV-2 receptor-binding domain; or BNT162b2, which encodes a membrane-anchored SARS-CoV-2 full-length spike, stabilized in the prefusion conformation. The primary outcome was safety (e.g., local and systemic reactions and adverse events); immunogenicity was a secondary outcome. Trial groups were defined according to vaccine candidate, age of the participants, and vaccine dose level (10 μg, 20 μg, 30 μg, and 100 μg). In all groups but one, participants received two doses, with a 21-day interval between doses; in one group (100 μg of BNT162b1), participants received one dose.ResultsA total of 195 participants underwent randomization. In each of 13 groups of 15 participants, 12 participants received vaccine and 3 received placebo. BNT162b2 was associated with a lower incidence and severity of systemic reactions than BNT162b1, particularly in older adults. In both younger and older adults, the two vaccine candidates elicited similar dose-dependent SARS-CoV-2-neutralizing geometric mean titers, which were similar to or higher than the geometric mean titer of a panel of SARS-CoV-2 convalescent serum samples.ConclusionsThe safety and immunogenicity data from this U.S. phase 1 trial of two vaccine candidates in younger and older adults, added to earlier interim safety and immunogenicity data regarding BNT162b1 in younger adults from trials in Germany and the United States, support the selection of BNT162b2 for advancement to a pivotal phase 2-3 safety and efficacy evaluation. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.).
Project description:Background and aimsAlthough COVID-19 vaccination is recommended for the patients with chronic liver disease, the clinical outcomes of COVID-19 vaccinated in patients with chronic hepatitis B (CHB) has not been well characterized. The study aimed to explore the safety and specific antibody responses following COVID-19 vaccination among CHB patients.MethodsPatients with CHB were included. All patients were vaccinated with two doses of inactivated vaccine (CoronaVac) or three doses of adjuvanted protein subunit vaccine (ZF2001). The adverse events were recorded and neutralizing antibody (NAb) were determined 14 days following the whole-course vaccination.ResultsA total of 200 patients with CHB were included. Specific NAb against SARS-CoV-2 were positive in 170 (84.6%) patients. The median (IQR) concentrations of NAb were 16.32 (8.44-34.10) AU/ml. Comparison of immune responses between CoronaVac and ZF2001 vaccines showed no significant differences in neither the concentrations of NAb nor the seropositive rates (84.4 vs. 85.7%). Moreover, we observed lower immunogenicity in older patients and in patients with cirrhosis or underlying comorbidities. The incidences of adverse events were 37 (18.5%) with the most common adverse event as injection side pain [25 (12.5%)], followed by fatigue [15 (7.5%)]. There were no differences in the frequencies of adverse between CoronaVac and ZF2001 (19.3% vs. 17.6%). Almost all of the adverse reactions were mild and self-resolved within a few days after vaccination. Severe adverse events were not observed.ConclusionsCOVID-19 vaccines, CoronaVac and ZF2001 had a favorable safety profile and induced efficient immune response in patients with CHB.
Project description:BackgroundPatients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients.ObjectivesWe sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI.MethodsIn a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination.ResultsSeroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response.ConclusionsCOVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.