Project description:In the past decade, vaping has become more prevalent globally. Since mid-2019, reports have linked the use of vaping devices to lung injury (EVALI). This is the first reported adult case outside the USA to require ECMO for a severe vaping complication. https://bit.ly/39hf2ZY.
Project description:ObjectivesChanges in right ventricular size and function are frequently observed in patients with severe acute respiratory distress syndrome. The majority of patients who receive venovenous extracorporeal membrane oxygenation undergo chest CT and transthoracic echocardiography. The aims of this study were to compare the use of CT and transthoracic echocardiography to evaluate the right ventricular function and to determine the prevalence of acute cor pulmonale in this patient population.DesignObservational, retrospective, single-center, cohort study.SettingSevere respiratory failure and extracorporeal membrane oxygenation center.PatientsAbout 107 patients with severe acute respiratory distress syndrome managed with venovenous extracorporeal membrane oxygenation.InterventionsChest CT to evaluate right ventricular size and transthoracic echocardiography to evaluate right ventricular size and function.Measurements and main resultsAll 107 patients had a qualitative assessment of right ventricular size and function on transthoracic echocardiography. Quantitative measurements were available in 54 patients (50%) who underwent transthoracic echocardiography and in 107 of patients (100%) who received CT. Right ventricular dilatation was defined as a right ventricle end-diastolic diameter greater than left ventricular end-diastolic diameter upon visual assessment or an right ventricle end-diastolic diameter/left ventricular end-diastolic diameter and/or right ventricle cavity area/left ventricular cavity area of greater than 0.9. Right ventricle systolic function was visually estimated as being normal or impaired (visual right ventricular systolic impairment). The right ventricle was found to be dilated in 38/107 patients (36%) and in 58/107 patients (54%), using transthoracic echocardiography or CT right ventricle end-diastolic diameter/left ventricular end-diastolic diameter, respectively. When the CT right ventricle cavity/left ventricular cavity area criterion was used, the right ventricle was dilated in 19/107 patients (18%). About 33/107 patients (31%) exhibited visual right ventricular systolic impairment. Transthoracic echocardiography right ventricle end-diastolic diameter/left ventricular end-diastolic diameter showed good agreement with CT right ventricle cavity/left ventricular cavity area (R 2 = 0.57; p < 0.01). A CT right ventricle cavity/left ventricular cavity area greater than 0.9 provided the optimal cutoff for acute cor pulmonale on transthoracic echocardiography with an AUC of 0.78. Acute cor pulmonale was defined by the presence of a right ventricle "D-shape" and quantitative right ventricle dilatation on transthoracic echocardiography or a right ventricle cavity/left ventricular cavity area greater than 0.9 on CT. A diagnosis of acute cor pulmonale was made in 9/54 (14% patients) on transthoracic echocardiography and in 19/107 (18%) on CT.ConclusionsChanges in right ventricular size and function are common in patients with severe acute respiratory distress syndrome requiring venovenous extracorporeal membrane oxygenation with up to 18% showing imaging evidence of acute cor pulmonale. A CT right ventricular cavity /left ventricular cavity area greater than 0.9 is indicative of impaired right ventricular systolic function.
Project description:BackgroundCase series have reported favorable outcomes with extracorporeal membrane oxygenation (ECMO) in patients with severe acute respiratory distress syndrome. However, those patients were generally young, with few comorbid conditions.ObjectiveTo characterize the clinical features and survival rates of patients with severe acute respiratory distress syndrome who met criteria for ECMO but were managed without it.MethodsPatients who met the study criteria were identified prospectively. Inclusion criteria for ECMO included severe hypoxemia, uncompensated hypercapnia, or elevated end-inspiratory plateau pressures despite low tidal volume ventilation. Predicted survival rates with ECMO were calculated using the Respiratory ECMO Survival Prediction score.ResultsOf the 46 patients who met the criteria for severe acute respiratory distress syndrome and ECMO consideration, 5 received ECMO and 16 patients had at least 1 contraindication to it. The remaining 25 patients met ECMO criteria but did not receive the treatment. The patients' mean age was 53.5 (SD, 14.3) years; 84% had at least 1 major comorbid condition. The median predicted survival rate with ECMO was 57%. The actual hospital discharge survival rate without ECMO was 56%.ConclusionsThe general medical intensive care patient population with severe acute respiratory distress syndrome is older and sicker than patients reported in prior case series in which patients were treated with ECMO. In this study, the survival rate without ECMO was similar to predicted survival rates with ECMO.
Project description:Neurologic complications following acute respiratory distress syndrome (ARDS) are well described, however, information on the neurologic outcome regarding peripheral nervous system complications in critically ill ARDS patients, especially those who received extracorporeal membrane oxygenation (ECMO) are lacking. In this prospective observational study 28 ARDS patients who survived after ECMO or conventional nonECMO treatment were examined for neurological findings. Nine patients had findings related to cranial nerve innervation, which differed between ECMO and nonECMO patients (p = 0.031). ECMO patients had severely increased patella tendon reflex (PTR) reflex levels (p = 0.027 vs. p = 0.125) as well as gastrocnemius tendon reflex (GTR) (p = 0.041 right, p = 0.149 left) were affected on the right, but not on the left side presumably associated with ECMO cannulation. Paresis (14.3% of patients) was only found in the ECMO group (p = 0.067). Paresthesia was frequent (nonECMO 53.8%, ECMO 62.5%; p = 0.064), in nonECMO most frequently due to initial trauma and polyneuropathy, in the ECMO group mainly due to impairments of N. cutaneus femoris lateralis (4 vs. 0; p = 0.031). Besides well-known central neurologic complications, more subtle complications were detected by thorough clinical examination. These findings are sufficient to hamper activities of daily living and impair quality of life and psychological health and are presumably directly related to ECMO therapy.
Project description:Objective: Extracorporeal membrane oxygenation (ECMO) has supported oxygen delivery and carbon dioxide removal in neonatal severe respiratory failure for more than 4 decades. The definition and diagnosis of neonatal acute respiratory distress syndrome (ARDS) was made according to the criteria first established by a Montreux Conference in 2017. By far, there has been no ECMO efficiency studies in neonatal ARDS. We aimed to compare the outcomes of neonates with severe ARDS supported with and without ECMO. Design: Retrospective pair-matched study. Setting: In the present retrospective pair-matched study, the outcomes of severe ARDS with ECMO support and without ECMO support were analyzed and compared. Propensity score matching was conducted. The study subjects were selected from a China Neonatal ECMO (CNECMO) study. In total, five hospitals were included in the CNECMO study. The patients were matched with demographic and clinical data. The primary endpoint was in-hospital mortality. Secondary outcomes included ventilator-time, ICU stay, hospitalization costs and cranial MRI results. Patients: 145 neonates with severe ARDS (Oxygenation Index, OI ≥16) from 5 hospitals. Interventions: No interventions. Measurements and Main Results: We collected the data of 145 neonates with severe ARDS (Oxygenation Index, OI≥16) from 5 hospitals. Among them, 42 neonates received venoarterial (VA) ECMO support, and the remaining 103 neonates were treated with conventional mechanical ventilation. The mortality of ECMO-supported neonates was not significantly different compared with the ESLO neonatal respiratory-supported from 2012 to 2018 (23.8 vs. 32.5%, p = 0.230). After matching with the propensity score we got 31 pairs. The ECMO-supported neonates had a lower in-hospital mortality (6 of 31, 19.4%) vs. non ECMO-supported patients (18 of 31, 58.1%) (p = 0.002). Hospitalization costs of survivors in ECMO-supported neonates were significantly higher than that of non-ECMO-supported neonates (p < 0.001). There was no difference of ventilator-times (p = 0.206), ICU stay (p = 0.879) and cranial MRI (p = 0.899) between the survivors of ECMO-supported and non-ECMO-supported neonates with ARDS. Conclusions: By far, there has been no ECMO efficiency studies in neonatal ARDS. This study found that ECMO-support have superior outcomes compared with non-ECMO-support in neonates with severe ARDS.
Project description:We examined and compared the clinical characteristics of acute respiratory distress syndrome (ARDS) patients who received and did not receive extracorporeal membrane oxygenation (ECMO) support. The national health insurance database of South Korea was used to obtain real-world data. All adult patients admitted to intensive care units for ARDS treatment between 1 January 2014 and 31 December 2019 were included in this study. Of the 10,173 patients with ARDS included in the analysis, 740 (7.3%) received ECMO support for a mean duration of 1.6 days (standard deviation [SD]: 2.8 days) and were assigned to the ECMO group. The ECMO group had a significantly lower mean age at 57.0 years (SD: 15.7 years) than the non-ECMO group (71.8 Â years [SD: 15.1 Â years], P < 0.001). In multivariable logistic regression, a 1-year increase in age was associated with a 5% lower prevalence of ECMO support. The annual case volume was classified into four groups by quartile ratio (Q1 [lowest], Q2, Q3, and Q4 [highest]), and Q2, Q3, and Q4 groups showed a higher prevalence of ECMO support than the Q1 group. ECMO support was also performed more frequently in high case volume centers than in low case volume centers for ARDS patients.
Project description:BackgroundPatients with COVID-19 who develop severe acute respiratory distress syndrome (ARDS) can have symptoms that rapidly evolve to profound hypoxaemia and death. The efficacy of extracorporeal membrane oxygenation (ECMO) for patients with severe ARDS in the context of COVID-19 is unclear. We aimed to establish the clinical characteristics and outcomes of patients with respiratory failure and COVID-19 treated with ECMO.MethodsThis retrospective cohort study was done in the Paris-Sorbonne University Hospital Network, comprising five intensive care units (ICUs) and included patients who received ECMO for COVID-19 associated ARDS. Patient demographics and daily pre-ECMO and on-ECMO data and outcomes were collected. Possible outcomes over time were categorised into four different states (states 1-4): on ECMO, in the ICU and weaned off ECMO, alive and out of ICU, or death. Daily probabilities of occupation in each state and of transitions between these states until day 90 post-ECMO onset were estimated with use of a multi-state Cox model stratified for each possible transition. Follow-up was right-censored on July 10, 2020.FindingsFrom March 8 to May 2, 2020, 492 patients with COVID-19 were treated in our ICUs. Complete day-60 follow-up was available for 83 patients (median age 49 [IQR 41-56] years and 61 [73%] men) who received ECMO. Pre-ECMO, 78 (94%) patients had been prone-positioned; their median driving pressure was 18 (IQR 16-21) cm H2O and PaO2/FiO2 was 60 (54-68) mm Hg. At 60 days post-ECMO initiation, the estimated probabilities of occupation in each state were 6% (95% CI 3-14) for state 1, 18% (11-28) for state 2, 45% (35-56) for state 3, and 31% (22-42) for state 4. 35 (42%) patients had major bleeding and four (5%) had a haemorrhagic stroke. 30 patients died.InterpretationThe estimated 60-day survival of ECMO-rescued patients with COVID-19 was similar to that of studies published in the past 2 years on ECMO for severe ARDS. If another COVID-19 outbreak occurs, ECMO should be considered for patients developing refractory respiratory failure despite optimised care.FundingNone.
Project description:Extracorporeal membrane oxygenation (ECMO) is increasingly being used to treat severe acute respiratory distress syndrome (ARDS). However, there is limited clinical evidence about how to optimize the technique. Experimental research can provide an alternative to fill the actual knowledge gap. The purpose of the present study was to develop and validate an animal model of acute lung injury (ALI) which resembled severe ARDS, and which could be successfully supported with ECMO. Eighteen pigs were randomly allocated into three groups: sham, ALI, and ALI + ECMO. ALI was induced by a double-hit consisting in repeated saline lavage followed by a 2-hour period of injurious ventilation. All animals were followed up to 24 hours while being ventilated with conventional ventilation (tidal volume 10 ml/kg). The lung injury model resulted in severe hypoxemia, increased airway pressures, pulmonary hypertension, and altered alveolar membrane barrier function, as indicated by an increased protein concentration in bronchoalveolar fluid, and increased wet/dry lung weight ratio. Histologic examination revealed severe diffuse alveolar damage, characteristic of ARDS. Veno-venous ECMO was started at the end of lung injury induction with a flow > 60 ml/kg/min resulting in rapid reversal of hypoxemia and pulmonary hypertension. Mortality was 0, 66.6 and 16.6% in the SHAM, ALI and ALI + ECMO groups, respectively (p < 0.05). This is a novel clinically relevant animal model that can be used to optimize the approach to ECMO and foster translational research in extracorporeal lung support.