Spontaneous dynamical disordering of borophenes in MgB2 and related metal borides
Ontology highlight
ABSTRACT: Layered boron compounds have attracted significant interest in applications from energy storage to electronic materials to device applications, owing in part to a diversity of surface properties tied to specific arrangements of boron atoms. Here we report the energy landscape for surface atomic configurations of MgB2 by combining first-principles calculations, global optimization, material synthesis and characterization. We demonstrate that contrary to previous assumptions, multiple disordered reconstructions are thermodynamically preferred and kinetically accessible within exposed B surfaces in MgB2 and other layered metal diborides at low boron chemical potentials. Such a dynamic environment and intrinsic disordering of the B surface atoms present new opportunities to realize a diverse set of 2D boron structures. We validated the predicted surface disorder by characterizing exfoliated boron-terminated MgB2 nanosheets. We further discuss application-relevant implications, with a particular view towards understanding the impact of boron surface heterogeneity on hydrogen storage performance. Layered boron compounds attract enormous interest in applications. This work reports first-principles calculations coupled with global optimization to show that the outer boron surface in MgB2 nanosheets undergo disordering and clustering, which is experimentally confirmed in synthesized MgB2 nanosheets.
SUBMITTER: Li S
PROVIDER: S-EPMC8560812 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA