Project description:Duchenne's muscular dystrophy is an X-linked neuromuscular disease that manifests as muscle atrophy and cardiomyopathy in young boys. However, a considerable percentage of carrier females are often diagnosed with cardiomyopathy at an advanced stage. Existing therapy is not disease-specific and has limited effect, thus many patients and symptomatic carrier females prematurely die due to heart failure. Early detection is one of the major challenges that muscular dystrophy patients, carrier females, family members and, research and medical teams face in the complex course of dystrophic cardiomyopathy management. Despite the widespread adoption of advanced imaging modalities such as cardiac magnetic resonance, there is much scope for refining the diagnosis and treatment of dystrophic cardiomyopathy. This comprehensive review will focus on the pertinent clinical aspects of cardiac disease in muscular dystrophy while also providing a detailed consideration of the known and developing concepts in the pathophysiology of muscular dystrophy and forthcoming therapeutic options.
Project description:ObjectiveTo demonstrate experience and feasibility of a precision medicine approach for patients with unexplained cytopenias, defined as low blood counts in one or more cell lineages, persistent for 6 months or longer, in the absence of known nutritional, autoimmune, infectious, toxic, and neoplastic (secondary) causes.Patients and methodsPatients were evaluated in our clinic between November 8, 2016, and January 12, 2018. After a thorough evaluation of known causes, family history, and appropriate clinical assays, genomic evaluation was performed in a stepwise manner, through Sanger, targeted, and/or whole-exome sequencing. Variants were analyzed and discussed in a genomics tumor board attended by clinicians, bioinformaticians, and molecular biologists.ResultsSixty-eight patients were evaluated in our clinic. After genomic interrogation, they were classified into inherited bone marrow failure syndromes (IBMFS) (n=24, 35%), cytopenias without a known clinical syndrome which included idiopathic and clonal cytopenias of undetermined significance (CCUS) (n=30, 44%), and patients who did not fit into the above two categories ("others," n=14, 21%). A significant family history was found in only 17 (25%) patients (9 IBMFS, 2 CCUS, and 6 others), whereas gene variants were found in 43 (63%) patients (34 [79%] pathogenic including 12 IBMFS, 17 CCUS, and 5 others]. Genomic assessment resulted in a change in clinical management in 17 (25%) patients, as evidenced by changes in decisions with regards to therapeutic interventions (n=8, 47%), donor choice (n=6, 35%), and/or choice of conditioning regimen for hematopoietic stem cell transplantation (n=8, 47%).ConclusionWe show clinical utility of a real-world algorithmic precision medicine approach for unexplained cytopenias.
Project description:Original patient tumor is directly implanted in mice xenografts. Tumor is propagated to multiple mice for conduct of 6 arm treatment trials and control. Therapies are selected based on T0 and F0 genomic profiles. ICE-T refractory tumor are implanted and additional 6 arm treatment trial and control conducted based on genomic profiles of F2 generation mice to suggested therapies Original patient tumor expanded in F0 mouse generation to F1 generation for multiple arm therapy trial and then refractory tumors implanted for additional multiple arm therapy trial
Project description:The standard of care for first-tier clinical investigation of the etiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion-deletions (indels) and single nucleotide variant (SNV) mutations. Whole genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilized WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a 4-fold increase in diagnostic rate over CMA (8%) (p-value = 1.42e-05) alone and >2-fold increase in CMA plus targeted gene sequencing (13%) (p-value = 0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harboring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counseling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.
Project description:Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in western countries, with an incidence of approximately 5.1/100,000 new cases per year. Some patients may never require treatment, whereas others relapse early after front line therapeutic approaches. Recent whole genome and whole exome sequencing studies have allowed a better understanding of CLL pathogenesis and the identification of genetic lesions with potential clinical relevance. Consistently, precision medicine plays a pivotal role in the treatment algorithm of CLL, since the integration of molecular biomarkers with the clinical features of the disease may guide treatment choices. Most CLL patients present at the time of diagnosis with an early stage disease and are managed with a watch and wait strategy. For CLL patients requiring therapy, the CLL treatment armamentarium includes both chemoimmunotherapy strategies and biological drugs. The efficacy of these treatment strategies relies upon specific molecular features of the disease. TP53 disruption (including both TP53 mutation and 17p deletion) is the strongest predictor of chemo-refractoriness, and the assessment of TP53 status is the first and most important decisional node in the first line treatment algorithm. The presence of TP53 disruption mandates treatment with biological drugs that inhibit the B cell receptor or, alternatively, the B-cell lymphoma 2 (BCL2) pathway and can, at least in part, circumvent the chemorefractoriness of TP53-disrupted patients. Beside TP53 disruption, the mutational status of immunoglobulin heavy variable (IGHV) genes also helps clinicians to improve treatment tailoring. In fact, patients carrying mutated IGHV genes in the absence of TP53 disruption experience a long-lasting and durable response to chemoimmunotherapy after fludarabine, cyclophosphamide, and rituximab (FCR) treatment with a survival superimposable to that of a matched general population. In contrast, patients with unmutated IGHV genes respond poorly to chemoimmunotherapy and deserve treatment with B cell receptor inhibitors. Minimal residual disease is also emerging as a relevant biomarker with potential clinical implications. Overall, precision medicine is now a mainstay in the management and treatment stratification of CLL. The identification of novel predictive biomarkers will allow further improvements in the treatment tailoring of this leukemia.
Project description:Precision Medicine emerges from the genomic paradigm of health and disease. For precise molecular diagnoses of genetic diseases, we must analyze the Whole Exome (WES) or the Whole Genome (WGS). By not needing exon capture, WGS is more powerful to detect single nucleotide variants and copy number variants. In healthy individuals, we can observe monogenic highly penetrant variants, which may be causally responsible for diseases, and also susceptibility variants, associated with common polygenic diseases. But there is the major problem of penetrance. Thus, there is the question of whether it is worthwhile to perform WGS in all healthy individuals as a step towards Precision Medicine. The genetic architecture of disease is consistent with the fact that they are all polygenic. Moreover, ancestry adds another layer of complexity. We are now capable of obtaining Polygenic Risk Scores for all complex diseases using only data from new generation sequencing. Yet, review of available evidence does not at present favor the idea that WGS analyses are sufficiently developed to allow reliable predictions of the risk components for monogenic and polygenic hereditary diseases in healthy individuals. Probably, it is still better for WGS to remain reserved for the diagnosis of pathogenic variants of Mendelian diseases.
Project description:Personalized medicine, an approach to care in which individual characteristics are used for targeting interventions and maximizing health outcomes, is rapidly becoming a reality for many diseases. Childhood asthma is a heterogeneous disease and many children have uncontrolled symptoms. Therefore, an individualized approach is needed for improving asthma outcomes in children. The rapidly evolving fields of genomics and pharmacogenomics may provide a way to achieve asthma control and reduce future risks in children with asthma. In particular, pharmacogenomics can provide tools for identifying novel molecular mechanisms and biomarkers to guide treatment. Emergent high-throughput technologies, along with patient pheno-endotypization, will increase our knowledge of several molecular mechanisms involved in asthma pathophysiology and contribute to selecting and stratifying appropriate treatment for each patient.
Project description:Diabetes has become a major burden of healthcare expenditure. Diabetes management following a uniform treatment algorithm is often associated with progressive treatment failure and development of diabetic complications. Recent advances in our understanding of the genomic architecture of diabetes and its complications have provided the framework for development of precision medicine to personalize diabetes prevention and management. In the present review, we summarized recent advances in the understanding of the genetic basis of diabetes and its complications. From a clinician's perspective, we attempted to provide a balanced perspective on the utility of genomic medicine in the field of diabetes. Using genetic information to guide management of monogenic forms of diabetes represents the best-known examples of genomic medicine for diabetes. Although major strides have been made in genetic research for diabetes, its complications and pharmacogenetics, ongoing efforts are required to translate these findings into practice by incorporating genetic information into a risk prediction model for prioritization of treatment strategies, as well as using multi-omic analyses to discover novel drug targets with companion diagnostics. Further research is also required to ensure the appropriate use of this information to empower individuals and healthcare professionals to make personalized decisions for achieving the optimal outcome.
Project description:Organoids are cultivated in extracellular matrix from different basement membrane extracts (BMEs) that are most commonly acquired commercially. However, the impact of different sources and lots of BMEs on organoid drug response is unknown. Here, we tested the impact of BME source and lot on proliferation, chemotherapy and targeted therapy drug response, and global gene expression in mouse and human pancreatic ductal adenocarcinoma organoids. Both mouse and human organoids displayed increased proliferation in Matrigel (Corning) compared to Cultrex (RnD) and UltiMatrix (RnD). However, we observed no substantial impact on drug response when organoids were cultured in Matrigel, Cultrex, or UltiMatrix. We also did not observe major shifts in gene expression across the different BME sources.