Unknown

Dataset Information

0

Volumetric extrusive rates of silicic supereruptions from the Afro-Arabian large igneous province


ABSTRACT: The main phase of silicic volcanism from the Afro-Arabian large igneous province preserves some of the largest volcanic eruptions on Earth, with six units totaling >8,600 km3 dense rock equivalent (DRE). The large volumes of rapidly emplaced individual eruptions present a case study for examining the tempo of voluminous silicic magma generation and emplacement. Here were report high-precision 206Pb/238U zircon ages and show that the largest sequentially dated eruptions occurred within 48 ± 34 kyr (29.755 ± 0.023 Ma to 29.707 ± 0.025 Ma), yielding the highest known long-term volumetric extrusive rate of silicic volcanism on Earth. While these are the largest known sequential silicic supereruptions, they did not cause major global environmental change. We also provide a robust tie-point for calibration of the geomagnetic polarity timescale by integrating 40Ar/39Ar data with our 206Pb/238U ages to yield new constraints on the duration of the C11n.1r Subchron. Quantifying the tempo of large-volume silicic magma generation and eruption is a long-standing but elusive task. Here we show that the three largest sequentially dated eruptions, totaling >4,300 km3, occurred within 48 ± 34 kyr and yield the highest known long term volumetric extrusive rate of silicic volcanism on Earth.

SUBMITTER: Thines J 

PROVIDER: S-EPMC8563981 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6345756 | biostudies-literature
| S-EPMC5869710 | biostudies-literature
| S-EPMC6884559 | biostudies-literature
| S-EPMC6353965 | biostudies-literature
| S-EPMC7452816 | biostudies-literature
| S-EPMC7567877 | biostudies-literature
| S-EPMC5704025 | biostudies-literature