Project description:ImportanceHematoma expansion is an important determinant of outcome in spontaneous intracerebral hemorrhage (ICH) due to small vessel disease (SVD), but the association between the severity of the underlying SVD and the extent of bleeding at the acute phase is unknown to date.ObjectiveTo investigate the association between key magnetic resonance imaging (MRI) markers of SVD (as per the Standards for Reporting Vascular Changes on Neuroimaging [STRIVE] guidelines) and hematoma volume and expansion in patients with lobar or deep ICH.Design, setting, and participantsAnalysis of data collected from 418 consecutive patients admitted with primary lobar or deep ICH to a single tertiary care medical center between January 1, 2000, and October 1, 2012. Data were analyzed on March 4, 2016. Participants were consecutive patients with computed tomographic images allowing ICH volume calculation and MRI allowing imaging markers of SVD assessment.Main outcomes and measuresThe ICH volumes at baseline and within 48 hours after symptom onset were measured in 418 patients with spontaneous ICH without anticoagulant therapy, and hematoma expansion was calculated. Cerebral microbleeds, cortical superficial siderosis, and white matter hyperintensity volume were assessed on MRI. The associations between these SVD markers and ICH volume, as well as hematoma expansion, were investigated using multivariable models.ResultsThis study analyzed 254 patients with lobar ICH (mean [SD] age, 75 [11] years and 140 [55.1%] female) and 164 patients with deep ICH (mean [SD] age 67 [14] years and 71 [43.3%] female). The presence of cortical superficial siderosis was an independent variable associated with larger ICH volume in the lobar ICH group (odds ratio per quintile increase in final ICH volume, 1.49; 95% CI, 1.14-1.94; P = .004). In multivariable models, the absence of cerebral microbleeds was associated with larger ICH volume for both the lobar and deep ICH groups (odds ratios per quintile increase in final ICH volume, 1.41; 95% CI, 1.11-1.81; P = .006 and 1.43; 95% CI, 1.04-1.99; P = .03; respectively) and with hematoma expansion in the lobar ICH group (odds ratio, 1.70; 95% CI, 1.07-2.92; P = .04). The white matter hyperintensity volumes were not associated with either hematoma volume or expansion.Conclusions and relevanceIn patients admitted with primary lobar or deep ICH to a single tertiary care medical center, the presence of cortical superficial siderosis was an independent variable associated with larger lobar ICH volume, and the absence of cerebral microbleeds was associated with larger lobar and deep ICHs. The absence of cerebral microbleeds was independently associated with more frequent hematoma expansion in patients with lobar ICH. We provide an analytical framework for future studies aimed at limiting hematoma expansion.
Project description:Ambulatory arterial stiffness index (AASI) is associated with microvascular damage in other organs, but the association with microvascular brain damage is unknown. The association of AASI with magnetic resonance imaging (MRI) markers of cerebral small vessel disease in 143 patients with lacunar stroke was investigated. We performed 24-hour ambulatory blood pressure monitoring and scored the presence of lacunes, white matter hyperintensities, perivascular spaces, and cerebral microbleeds on brain MRI. In logistic regression analyses, AASI was associated with white matter hyperintensities, but, after adjustment for age and sex, this association lost significance. AASI was not associated with lacunes, microbleeds, or perivascular spaces. Systolic and diastolic 24-hour blood pressure values were associated with lacunes, perivascular spaces, and microbleeds independent of age and sex. Despite its significance and growing interest as a possible prognostic and therapeutic target in (micro)vascular diseases, AASI seems to have no added value over standard 24-hour blood pressure in cerebral small vessel disease.
Project description:Background and objectiveWe investigated the associations between the APOE genotype, intracerebral hemorrhage (ICH), and neuroimaging markers of cerebral amyloid angiopathy (CAA).MethodsWe included patients from a prospective, multicenter UK observational cohort study of patients with ICH and representative UK population controls. First, we assessed the association of the APOE genotype with ICH (compared with controls without ICH). Second, among patients with ICH, we assessed the association of APOE status with the hematoma location (lobar or deep) and brain CT markers of CAA (finger-like projections [FLP] and subarachnoid extension [SAE]).ResultsWe included 907 patients with ICH and 2,636 controls. The mean age was 73.2 (12.4 SD) years for ICH cases vs 69.6 (0.2 SD) for population controls; 50.3% of cases and 42.1% of controls were female. Compared with controls, any APOE ε2 allele was associated with all ICH (lobar and nonlobar) and lobar ICH on its own in the dominant model (OR 1.38, 95% CI 1.13-1.7, p = 0.002 and OR 1.50, 95% CI 1.1-2.04, p = 0.01, respectively) but not deep ICH in an age-adjusted analyses (OR 1.26, 95% CI 0.97-1.63, p = 0.08). In the cases-only analysis, the APOE ε4 allele was associated with lobar compared with deep ICH in an age-adjusted analyses (OR 1.56, 95% CI 1.1-2.2, p = 0.01). When assessing CAA markers, APOE alleles were independently associated with FLP (ε4: OR 1.74, 95% CI 1.04-2.93, p = 0.04 and ε2/ε4: 2.56, 95% CI 0.99-6.61, p = 0.05). We did not find an association between APOE alleles and SAE.DiscussionWe confirmed associations between APOE alleles and ICH including lobar ICH. Our analysis shows selective associations between APOE ε2 and ε4 alleles with FLP, a CT marker of CAA. Our findings suggest that different APOE alleles might have diverging influences on individual neuroimaging biomarkers of CAA-associated ICH.
Project description:BACKGROUND AND PURPOSE:We evaluated whether lacunes in centrum semiovale (lobar lacunes) were associated with cerebral amyloid angiopathy (CAA) markers in an Asian intracerebral hemorrhage (ICH) population. METHODS:One hundred ten patients with primary ICH were classified as CAA-ICH (n=24; mean age, 70.9±13.9) or hypertensive ICH (n=86; mean age, 59.3±13.0) according to the presence of strictly lobar (per modified Boston criteria) or strictly deep bleeds (both ICH and cerebral microbleeds), respectively. Lacunes were evaluated in the supratentorial area and classified as lobar or classical deep based on the location. A subgroup of 36 patients also underwent Pittsburgh Compound B positron emission tomography to measure cerebral amyloid deposition and global standardized uptake value ratio were calculated. RESULTS:Lobar lacunes were more frequent in CAA-ICH than hypertensive ICH (29.2 versus 11.6%; P=0.036). In multivariable models, lobar lacunes were associated with lobar cerebral microbleed (odds ratio, 6.8; 95% confidence interval, 1.6-29.9; P=0.011) after adjustment for age, sex, hypertension, and white matter hyperintensity. In 15 CAA-ICH and 21 hypertensive ICH patients with Pittsburgh Compound B positron emission tomography, correlation analyses between lobar lacune counts and global standardized uptake value ratio showed positive association (?=0.40; P=0.02) and remained significant after adjustment for age (r=0.34; P=0.04). CONCLUSIONS:Our findings expand on recent work showing that lobar lacunes are more frequent in CAA-ICH than hypertensive ICH. Their independent association with lobar cerebral microbleeds and brain amyloid deposition suggests a relationship with CAA even in an Asian cohort with overall higher hypertensive load.
Project description:Brain imaging is essential for the diagnosis and characterization of cerebral small vessel disease. Several magnetic resonance imaging markers have therefore emerged, providing new information on the diagnosis, progression, and mechanisms of small vessel disease. Yet, the reproducibility of these small vessel disease markers has received little attention despite being widely used in cross-sectional and longitudinal studies. This review focuses on the main small vessel disease-related markers on magnetic resonance imaging including: white matter hyperintensities, lacunes, dilated perivascular spaces, microbleeds, and brain volume. The aim is to summarize, for each marker, what is currently known about: (1) its reproducibility in studies with a scan-rescan procedure either in single or multicenter settings; (2) the acquisition-related sources of variability; and, (3) the techniques used to minimize this variability. Based on the results, we discuss technical and other challenges that need to be overcome in order for these markers to be reliably used as outcome measures in future clinical trials. We also highlight the key points that need to be considered when designing multicenter magnetic resonance imaging studies of small vessel disease.
Project description:A quarter of ischaemic strokes are lacunar subtype, typically neurologically mild, usually resulting from intrinsic cerebral small vessel pathology, with risk factor profiles and outcome rates differing from other stroke subtypes. This European Stroke Organisation (ESO) guideline provides evidence-based recommendations to assist with clinical decisions about management of lacunar ischaemic stroke to prevent adverse clinical outcomes. The guideline was developed according to ESO standard operating procedures and Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. We addressed acute treatment (including progressive lacunar stroke) and secondary prevention in lacunar ischaemic stroke, and prioritised the interventions of thrombolysis, antiplatelet drugs, blood pressure lowering, lipid lowering, lifestyle, and other interventions and their potential effects on the clinical outcomes recurrent stroke, dependency, major adverse cardiovascular events, death, cognitive decline, mobility, gait, or mood disorders. We systematically reviewed the literature, assessed the evidence and where feasible formulated evidence-based recommendations, and expert concensus statements. We found little direct evidence, mostly of low quality. We recommend that patients with suspected acute lacunar ischaemic stroke receive intravenous alteplase, antiplatelet drugs and avoid blood pressure lowering according to current acute ischaemic stroke guidelines. For secondary prevention, we recommend single antiplatelet treatment long-term, blood pressure control, and lipid lowering according to current guidelines. We recommend smoking cessation, regular exercise, other healthy lifestyle modifications, and avoid obesity for general health benefits. We cannot make any recommendation concerning progressive stroke or other drugs. Large randomised controlled trials with clinically important endpoints, including cognitive endpoints, are a priority for lacunar ischaemic stroke.
Project description:Background and aimTo investigate whether a striped occipital cortex and intragyral hemorrhage, two markers recently detected on ultra-high-field 7-tesla-magnetic resonance imaging in hereditary cerebral amyloid angiopathy (CAA), also occur in sporadic CAA (sCAA) or non-sCAA intracerebral hemorrhage (ICH).MethodsWe performed 7-tesla-magnetic resonance imaging in patients with probable sCAA and patients with non-sCAA-ICH. Striped occipital cortex (linear hypointense stripes perpendicular to the cortex) and intragyral hemorrhage (hemorrhage restricted to the juxtacortical white matter of one gyrus) were scored on T2*-weighted magnetic resonance imaging. We assessed the association between the markers, other CAA-magnetic resonance imaging markers and clinical features.ResultsWe included 33 patients with sCAA (median age 70 years) and 29 patients with non-sCAA-ICH (median age 58 years). Striped occipital cortex was detected in one (3%) patient with severe sCAA. Five intragyral hemorrhages were found in four (12%) sCAA patients. The markers were absent in the non-sCAA-ICH group. Patients with intragyral hemorrhages had more lobar ICHs (median count 6.5 vs. 1.0), lobar microbleeds (median count >50 vs. 15), and lower median cognitive scores (Mini Mental State Exam: 20 vs. 28, Montreal Cognitive Assessment: 18 vs. 24) compared with patients with sCAA without intragyral hemorrhage. In 12 (36%) patients, sCAA diagnosis was changed to mixed-type small vessel disease due to deep bleeds previously unobserved on lower field-magnetic resonance imaging.ConclusionWhereas a striped occipital cortex is rare in sCAA, 12% of patients with sCAA have intragyral hemorrhages. Intragyral hemorrhages seem to be related to advanced disease and their absence in patients with non-sCAA-ICH could suggest specificity for CAA.
Project description:BackgroundThe importance of thromboembolism in the pathogenesis of lacunar stroke (LS), resulting from cerebral small vessel disease (cSVD), is debated, and although antiplatelets are widely used in secondary prevention after LS, there is limited trial evidence from well-subtyped patients to support this approach. We sought to evaluate whether altered anticoagulation plays a causal role in LS and cSVD using 2-sample Mendelian randomization.MethodsFrom a recent genome-wide association study (n=81 190), we used 119 genetic variants associated with venous thrombosis at genome-wide significance (P<5*10-8) and with a linkage disequilibrium r2<0.001 as instrumental variables. We also used genetic associations with stroke from the GIGASTROKE consortium (62 100 ischemic stroke cases: 10 804 cardioembolic stroke, 6399 large-artery stroke, and 6811 LS). In view of the lower specificity for LS with the CT-based phenotyping mainly used in GIGASTROKE, we also used data from patients with magnetic resonance imaging-confirmed LS (n=3199). We also investigated associations with more chronic magnetic resonance imaging features of cSVD, namely, white matter hyperintensities (n=37 355) and diffusion tensor imaging metrics (n=36 533).ResultsMendelian randomization analyses showed that genetic predisposition to venous thrombosis was associated with an increased odds of any ischemic stroke (odds ratio [OR], 1.19 [95% CI, 1.13-1.26]), cardioembolic stroke (OR, 1.32 [95% CI, 1.21-1.45]), and large-artery stroke (OR, 1.41 [95% CI, 1.26-1.57]) but not with LS (OR, 1.07 [95% CI, 0.99-1.17]) in GIGASTROKE. Similar results were found for magnetic resonance imaging-confirmed LS (OR, 0.94 [95% CI, 0.81-1.09]). Genetically predicted risk of venous thrombosis was not associated with imaging markers of cSVD.ConclusionsThese findings suggest that altered thrombosis plays a role in the risk of cardioembolic and large-artery stroke but is not a causal risk factor for LS or imaging markers of cSVD. This raises the possibility that antithrombotic medication may be less effective in cSVD and underscores the necessity for further trials in well-subtyped cohorts with LS to evaluate the efficacy of different antithrombotic regimens in LS.
Project description:Background and objectiveThe aim of this study was to evaluate the impact of radiographic cerebral small vessel disease (CSVD) on the severity of acute intracerebral hemorrhage (ICH) as measured by: ICH volume, hematoma expansion, and extension of intraventricular hemorrhage (IVH).MethodsCSVD was determined on baseline computed tomography (CT) scans of patients from the Ethnic and Racial Variations of Intracerebral Hemorrhage study through the extent of leukoaraiosis and cerebral atrophy using visual rating scales. The associations of leukoaraiosis and atrophy with ICH volume, hematoma expansion, IVH presence, and severity of IVH were tested using multivariable regression models. Secondary analyses were stratified by hemorrhage location. Bonferroni correction was applied to correct for multiple testing.ResultsA total of 2579 patients (mean age 61.7 years, 59% male) met inclusion criteria. Median ICH volume was 10.5 (Interquartile range [IQR] 4.0-25.3) mL. IVH was detected in 971 patients (38%). Neither leukoaraiosis nor atrophy was associated with hematoma expansion. Increasing grades of leukoaraiosis were associated with increased risk of IVH in a dose-dependent manner, while cerebral atrophy was inversely associated with IVH (both P for trend < 0.001). Increasing grades of global atrophy were dose-dependently associated with lower ICH volumes (ß (95% Confidence Interval [CI]) - 0.30[- 0.46, - 0.14], - 0.33[- 0.49, - 0.17], - 0.40[- 0.60, - 0.20], and - 0.54[- 0.76, - 0.32], for grades 1, 2, 3 and 4 compared to 0; all P < 0.001). The associations of leukoaraiosis with ICH volume were consistent with those of atrophy, albeit not meeting statistical significance.ConclusionsLeukoaraiosis and cerebral atrophy appear to have opposing associations with ICH severity. Cerebral atrophy correlates with smaller ICH volume and decreased risk and severity of IVH, while leukoaraiosis is associated with increased risk of IVH. Whether these observations reflect overlapping or divergent underlying mechanisms requires further study.
Project description:Background: Uncertainty exists over the long-term prognostic significance of cerebral small vessel disease (CSVD) in primary intracerebral hemorrhage (ICH). Methods: We performed a longitudinal analysis of CSVD and clinical outcomes in consecutive patients with primary ICH who had MRI. Baseline CSVD load (including white matter hyperintensities [WMH], cerebral microbleeds [CMBs], lacunes, and enlarged perivascular spaces [EPVS]) was evaluated. The cumulative CSVD score was calculated by combining the presence of each CSVD marker (range 0-4). We followed participants for poor functional outcome [modified Rankin scale [mRS] ≥ 4], stroke recurrence, and time-varying survival during a median follow-up of 4.9 [interquartile range [IQR] 3.1-6.0] years. Parsimonious and fuller multivariable logistic regression analysis and Cox-regression analysis were performed to estimate the association of CSVD markers, individually and collectively, with each outcome. Results: A total of 153 patients were included in the analyses. CMBs ≥ 10 [adjusted OR [adOR] 3.252, 95% CI 1.181-8.956, p = 0.023] and periventricular WMH (PWMH) (adOR 2.053, 95% CI 1.220-3.456, p = 0.007) were significantly associated with poor functional outcome. PWMH (adOR 2.908, 95% CI 1.230-6.878, p = 0.015) and lobar CMB severity (adOR 1.811, 95% CI 1.039-3.157, p = 0.036) were associated with stroke recurrence. The cumulative CSVD score was associated with poor functional outcome (adOR 1.460, 95% CI 1.017-2.096) and stroke recurrence (adOR 2.258, 95% CI 1.080-4.723). Death occurred in 36.1% (13/36) of patients with CMBs ≥ 10 compared with 18.8% (22/117) in those with CMB < 10 (adjusted HR 2.669, 95% CI 1.248-5.707, p = 0.011). In addition, the cumulative CSVD score ≥ 2 was associated with a decreased survival rate (adjusted HR 3.140, 95% CI 1.066-9.250, p = 0.038). Conclusions: Severe PWMH, CMB, or cumulative CSVD burden exert important influences on the long-term outcome of ICH.