Tie2 activation protects against prothrombotic endothelial dysfunction in COVID-19.
Ontology highlight
ABSTRACT: Endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. Constitutively, the endothelial surface is anticoagulant, a property maintained at least in part via signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant endothelial dysfunction and alterations in the Tie2-angiopoietin axis. Primary human endothelial cells treated with plasma from patients with severe COVID-19 upregulated expression of thromboinflammatory genes, inhibited expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. Lung autopsies from COVID-19 patients demonstrated a prothrombotic endothelial signature. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity and highest levels were associated with worse survival. These data highlight the disruption of Tie2-angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Our findings provide rationale for current trials of Tie2-activating therapy with AKB-9778 in COVID-19.
SUBMITTER: Schmaier AA
PROVIDER: S-EPMC8564889 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA