Origin of enantioselectivity reversal in Lewis acid-catalysed Michael additions relying on the same chiral source† † Electronic supplementary information (ESI) available. See DOI: 10.1039/d1sc03741b
Ontology highlight
ABSTRACT: Enantiodivergence is an important concept in asymmetric catalysis that enables access to both enantiomers of a product relying on the same chiral source as reagent. This strategy is particularly appealing as an alternate approach when only one enantiomer of the required chiral ligand is readily accessible but both enantiomers of the product are desired. Despite the potential significance, general catalytic methods to effectively reverse enantioselectivity by changing an achiral reaction parameter remain underdeveloped. Herein we report our studies focused on elucidating the origin of metal-controlled enantioselectivity reversal in Lewis acid-catalysed Michael additions. Rigorous experimental and computational investigations reveal that specific Lewis and Brønsted acid interactions between the substrate and ligand change depending on the ionic radius of the metal catalyst, and are key factors responsible for the observed enantiodivergence. This holds potential to further our understanding of and facilitate the design of future enantiodivergent transformations. Enantiodivergence is an important concept in asymmetric catalysis that enables access to both enantiomers of a product relying on the same chiral source as reagent.
SUBMITTER: Riehl P
PROVIDER: S-EPMC8565382 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA