Project description:SARS-CoV-2 virus, the causative agent of Covid-19, has fired up a global pandemic. The virus interacts with the human receptor angiotensin-converting enzyme 2 (ACE2) for an invasion via receptor binding domain (RBD) on its spike protein. To provide a deeper understanding of this interaction, we performed microsecond simulations of the RBD-ACE2 complex for SARS-CoV-2 and compared it with the closely related SARS-CoV discovered in 2003. We show residues in the RBD of SARS-CoV-2 that were mutated from SARS-CoV, collectively help make the RBD anchor much stronger to the N-terminal part of ACE2 than the corresponding residues on RBD of SARS-CoV. This would result in a reduced dissociation rate of SARS-CoV-2 from human receptor protein compared to SARS-CoV. The phenomenon was consistently observed in simulations beyond 500 ns and was reproducible across different force fields. Altogether, our study adds more insight into the critical dynamics of the key residues at the virus spike and human receptor binding interface and potentially aids the development of diagnostics and therapeutics to combat the pandemic efficiently.
Project description:Despite sequence similarity to SARS-CoV-1, SARS-CoV-2 has demonstrated greater widespread virulence and unique challenges to researchers aiming to study its pathogenicity in humans. The interaction of the viral receptor binding domain (RBD) with its main host cell receptor, angiotensin-converting enzyme 2 (ACE2), has emerged as a critical focal point for the development of anti-viral therapeutics and vaccines. In this study, we selectively identify and characterize the impact of mutating certain amino acid residues in the RBD of SARS-CoV-2 and in ACE2, by utilizing our recently developed NanoBiT technology-based biosensor as well as pseudotyped-virus infectivity assays. Specifically, we examine the mutational effects on RBD-ACE2 binding ability, efficacy of competitive inhibitors, as well as neutralizing antibody activity. We also look at the implications the mutations may have on virus transmissibility, host susceptibility, and the virus transmission path to humans. These critical determinants of virus-host interactions may provide more effective targets for ongoing vaccines, drug development, and potentially pave the way for determining the genetic variation underlying disease severity.
Project description:The SARS-CoV-2 coronavirus (COVID-19) that is causing the massive global pandemic exhibits similar human cell invasion mechanism as the coronavirus SARS-CoV, which had significantly lower fatalities. The cell membrane protein Angiotensin-converting enzyme 2 (ACE2) is the initiation point for both the coronavirus infections in humans. Here, we model the molecular interactions and mechanical properties of ACE2 with both SARS-CoV and COVID-19 spike protein receptor-binding domains (RBD). We report that the COVID-19 spike RBD interacts with ACE2 more strongly and at only two protein residues, as compared to multi-residue interaction of the SARS-CoV. Although both coronaviruses stiffen the ACE2, the impact of COVID-19 is six times larger, which points towards differences in the severity of the reported respiratory distress. The recognition of specific residues of ACE2 attachments to coronaviruses is important as the residues suggest potential sites of intervention to inhibit attachment and subsequent entry of the COVID-19 into human host cells.
Project description:SARS-CoV-2 infects humans through the binding of viral S-protein (spike protein) to human angiotensin I converting enzyme 2 (ACE2). The structure of the ACE2-S-protein complex has been deciphered and we focused on the 27 ACE2 residues that bind to S-protein. From human sequence databases, we identified nine ACE2 variants at ACE2-S-protein binding sites. We used both experimental assays and protein structure analysis to evaluate the effect of each variant on the binding affinity of ACE2 to S-protein. We found one variant causing complete binding disruption, two and three variants, respectively, strongly and mildly reducing the binding affinity, and two variants strongly enhancing the binding affinity. We then collected the ACE2 gene sequences from 57 nonhuman primates. Among the 6 apes and 20 Old World monkeys (OWMs) studied, we found no new variants. In contrast, all 11 New World monkeys (NWMs) studied share four variants each causing a strong reduction in binding affinity, the Philippine tarsier also possesses three such variants, and 18 of the 19 prosimian species studied share one variant causing a strong reduction in binding affinity. Moreover, one OWM and three prosimian variants increased binding affinity by >50%. Based on these findings, we proposed that the common ancestor of primates was strongly resistant to and that of NWMs was completely resistant to SARS-CoV-2 and so is the Philippine tarsier, whereas apes and OWMs, like most humans, are susceptible. This study increases our understanding of the differences in susceptibility to SARS-CoV-2 infection among primates.
Project description:ACE2 is a major receptor for cellular entry of SARS-CoV-2. Despite advances in targeting ACE2 to inhibit SARS-CoV-2 binding, strategies to flexibly and sufficiently reduce ACE2 levels for the prevention of SARS-CoV-2 infection have not been explored. Here, we reveal vitamin C (VitC) administration as a potent strategy to prevent SARS-CoV-2 infection. VitC reduces ACE2 protein levels in a dose-dependent manner, while even a partial reduction in ACE2 levels can greatly inhibit SARS-CoV-2 infection. Further studies reveal that USP50 is a crucial regulator of ACE2 levels. VitC blocks the USP50-ACE2 interaction, thus promoting K48-linked polyubiquitination of ACE2 at Lys788 and subsequent degradation of ACE2 without affecting its transcriptional expression. Importantly, VitC administration reduces host ACE2 levels and greatly blocks SARS-CoV-2 infection in mice. This study reveals that ACE2 protein levels are down-regulated by an essential nutrient, VitC, thereby enhancing protection against infection of SARS-CoV-2 and its variants.
Project description:The emergence of SARS-CoV-2 variants is a significant concern in developing effective therapeutics and vaccines in the middle of the ongoing COVID-19 pandemic. Here, we have identified a novel small molecule that inhibited the interactions between SARS-CoV-2 spike RBDs and ACE2 by modulating ACE2 without impairing its enzymatic activity necessary for normal physiological functions. Furthermore, the identified compounds suppressed viral infection in cultured cells by inhibiting the entry of ancestral and variant SARS-CoV-2. Our study suggests that targeting ACE2 could be a novel therapeutic strategy to inhibit SARS-CoV-2 entry into host cells and prevent the development of COVID-19.
Project description:The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major public health concern. A handful of static structures now provide molecular insights into how SARS-CoV-2 and SARS-CoV interact with its host target, which is the angiotensin converting enzyme 2 (ACE2). Molecular recognition, binding and function are dynamic processes. To evaluate this, multiple 500 ns or 1 μs all-atom molecular dynamics simulations were performed to better understand the structural stability and interfacial interactions between the receptor binding domain of the spike (S) protein of SARS-CoV-2 and SARS-CoV bound to ACE2. Several contacts were observed to form, break and reform in the interface during the simulations. Our results indicate that SARS-CoV-2 and SARS-CoV utilizes unique strategies to achieve stable binding to ACE2. Several differences were observed between the residues of SARS-CoV-2 and SARS-CoV that consistently interacted with ACE2. Notably, a stable salt bridge between Lys417 of SARS-CoV-2 S protein and Asp30 of ACE2 as well as three stable hydrogen bonds between Tyr449, Gln493 and Gln498 of SARS-CoV-2 and Asp38, Glu35 and Lys353 of ACE2 were observed, which were absent in the ACE2-SARS-CoV interface. Some previously reported residues, which were suggested to enhance the binding affinity of SARS-CoV-2, were not observed to form stable interactions in these simulations. Molecular mechanics-generalized Born surface area based free energy of binding was observed to be higher for SARS-CoV-2 in all simulations. Stable binding to the host receptor is crucial for virus entry. Therefore, special consideration should be given to these stable interactions while designing potential drugs and treatment modalities to target or disrupt this interface.