Project description:COVID-19 convalescent plasma, particularly plasma with high-titer SARS-CoV-2 (CoV2) antibodies, has been successfully used for treatment of COVID-19. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the four endemic human coronavirus (HCoV) genomes in 126 COVID-19 convalescent plasma donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies to SARS-CoV-2. We also found that plasma preferentially reactive to the CoV2 receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a two-peptide serosignature that identifies plasma donations with high anti-S titer but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting therapeutic plasma with desired functionalities.
Project description:SARS-CoV-2 (CoV2) antibody therapies, including COVID-19 convalescent plasma (CCP), monoclonal antibodies, and hyperimmune globulin, are among the leading treatments for individuals with early COVID-19 infection. The functionality of convalescent plasma varies greatly, but the association of antibody epitope specificities with plasma functionality remains uncharacterized. We assessed antibody functionality and reactivities to peptides across the CoV2 and the 4 endemic human coronavirus (HCoV) genomes in 126 CCP donations. We found strong correlation between plasma functionality and polyclonal antibody targeting of CoV2 spike protein peptides. Antibody reactivity to many HCoV spike peptides also displayed strong correlation with plasma functionality, including pan-coronavirus cross-reactive epitopes located in a conserved region of the fusion peptide. After accounting for antibody cross-reactivity, we identified an association between greater alphacoronavirus NL63 antibody responses and development of highly neutralizing antibodies against CoV2. We also found that plasma preferentially reactive to the CoV2 spike receptor binding domain (RBD), versus the betacoronavirus HKU1 RBD, had higher neutralizing titer. Finally, we developed a 2-peptide serosignature that identifies plasma donations with high anti-spike titer, but that suffer from low neutralizing activity. These results suggest that analysis of coronavirus antibody fine specificities may be useful for selecting desired therapeutics and understanding the complex immune responses elicited by CoV2 infection.
Project description:BackgroundConvalescent plasma therapy is a leading treatment for conferring temporary immunity to COVID-19-susceptible individuals or for use as post-exposure prophylaxis. However, not all recovered patients develop adequate antibody titers for donation and the relationship between avidity and neutralizing titers is currently not well understood.MethodsSARS-CoV-2 anti-spike and anti-nucleocapsid IgG titers and avidity were measured in a longitudinal cohort of COVID-19 hospitalized patients (n = 16 individuals) and a cross-sectional sample of convalescent plasma donors (n = 130). Epidemiologic correlates of avidity were examined in donors by linear regression. The association of avidity and a high neutralizing titer (NT) were also assessed in donors using modified Poisson regression.ResultsAntibody avidity increased over duration of infection and remained elevated. In convalescent plasma donors, higher levels of anti-spike avidity were associated with older age, male sex, and hospitalization. Higher NTs had a stronger positive correlation with anti-spike IgG avidity (Spearman ρ = 0.386; P < .001) than with anti-nucleocapsid IgG avidity (Spearman ρ = 0.211; P = .026). Increasing levels of anti-spike IgG avidity were associated with high NT (≥160) (adjusted prevalence ratio = 1.58 [95% confidence interval = 1.19-2.12]), independent of age, sex, and hospitalization.ConclusionsSARS-CoV-2 antibody avidity correlated with duration of infection and higher neutralizing titers, suggesting a potential alternative screening parameter for identifying optimal convalescent plasma donors.
Project description:Convalescent plasma is currently one of the leading treatments for COVID-19, but there is a paucity of data identifying therapeutic efficacy. A comprehensive analysis of the antibody responses in potential plasma donors and an understanding of the clinical and demographic factors that drive variant antibody responses is needed. Among 126 potential convalescent plasma donors, the humoral immune response was evaluated by a SARS-CoV-2 virus neutralization assay using Vero-E6-TMPRSS2 cells, commercial IgG and IgA ELISA to Spike (S) protein S1 domain (Euroimmun), IgA, IgG and IgM indirect ELISAs to the full-length S or S-receptor binding domain (S-RBD), and an IgG avidity assay. Multiple linear regression and predictive models were utilized to assess the correlations between antibody responses with demographic and clinical characteristics. IgG titers were greater than either IgM or IgA for S1, full length S, and S-RBD in the overall population. Of the 126 plasma samples, 101 (80%) had detectable neutralizing titers. Using neutralization titer as the reference, the sensitivity of the IgG ELISAs ranged between 95-98%, but specificity was only 20-32%. Male sex, older age, and hospitalization with COVID-19 were all consistently associated with increased antibody responses across the serological assays. Neutralizing antibody titers were reduced over time in contrast to overall antibody responses. There was substantial heterogeneity in the antibody response among potential convalescent plasma donors, but sex, age and hospitalization emerged as factors that can be used to identify individuals with a high likelihood of having strong antiviral antibody levels.
Project description:Convalescent plasma is a leading treatment for coronavirus disease 2019 (COVID-19), but there is a paucity of data identifying its therapeutic efficacy. Among 126 potential convalescent plasma donors, the humoral immune response was evaluated using a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus neutralization assay with Vero-E6-TMPRSS2 cells; a commercial IgG and IgA ELISA to detect the spike (S) protein S1 domain (EUROIMMUN); IgA, IgG, and IgM indirect ELISAs to detect the full-length S protein or S receptor-binding domain (S-RBD); and an IgG avidity assay. We used multiple linear regression and predictive models to assess the correlations between antibody responses and demographic and clinical characteristics. IgG titers were greater than either IgM or IgA titers for S1, full-length S, and S-RBD in the overall population. Of the 126 plasma samples, 101 (80%) had detectable neutralizing antibody (nAb) titers. Using nAb titers as the reference, the IgG ELISAs confirmed 95%-98% of the nAb-positive samples, but 20%-32% of the nAb-negative samples were still IgG ELISA positive. Male sex, older age, and hospitalization for COVID-19 were associated with increased antibody responses across the serological assays. There was substantial heterogeneity in the antibody response among potential convalescent plasma donors, but sex, age, and hospitalization emerged as factors that can be used to identify individuals with a high likelihood of having strong antiviral antibody responses.
Project description:Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration's (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31-35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was ~93% (PRNT50) and ~54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (>960 ELISA titers) showed maximal activity, but not all high titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.
Project description:BackgroundSeveral randomised clinical trials have studied convalescent plasma for coronavirus disease 2019 (COVID-19) using different protocols, with different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralising antibody titres, at different time-points and severities of illness.MethodsIn the prospective multicentre DAWn-plasma trial, adult patients hospitalised with COVID-19 were randomised to 4 units of open-label convalescent plasma combined with standard of care (intervention group) or standard of care alone (control group). Plasma from donors with neutralising antibody titres (50% neutralisation titre (NT50)) ≥1/320 was the product of choice for the study.ResultsBetween 2 May 2020 and 26 January 2021, 320 patients were randomised to convalescent plasma and 163 patients to the control group according to a 2:1 allocation scheme. A median (interquartile range) volume of 884 (806-906) mL) convalescent plasma was administered and 80.68% of the units came from donors with neutralising antibody titres (NT50) ≥1/320. Median time from onset of symptoms to randomisation was 7 days. The proportion of patients alive and free of mechanical ventilation on day 15 was not different between both groups (convalescent plasma 83.74% (n=267) versus control 84.05% (n=137)) (OR 0.99, 95% CI 0.59-1.66; p=0.9772). The intervention did not change the natural course of antibody titres. The number of serious or severe adverse events was similar in both study arms and transfusion-related side-effects were reported in 19 out of 320 patients in the intervention group (5.94%).ConclusionsTransfusion of 4 units of convalescent plasma with high neutralising antibody titres early in hospitalised COVID-19 patients did not result in a significant improvement of clinical status or reduced mortality.
Project description:BackgroundConvalescent plasma has been widely used to treat coronavirus disease 2019 (Covid-19) under the presumption that such plasma contains potentially therapeutic antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be passively transferred to the plasma recipient. Whether convalescent plasma with high antibody levels rather than low antibody levels is associated with a lower risk of death is unknown.MethodsIn a retrospective study based on a U.S. national registry, we determined the anti-SARS-CoV-2 IgG antibody levels in convalescent plasma used to treat hospitalized adults with Covid-19. The primary outcome was death within 30 days after plasma transfusion. Patients who were enrolled through July 4, 2020, and for whom data on anti-SARS-CoV-2 antibody levels in plasma transfusions and on 30-day mortality were available were included in the analysis.ResultsOf the 3082 patients included in this analysis, death within 30 days after plasma transfusion occurred in 115 of 515 patients (22.3%) in the high-titer group, 549 of 2006 patients (27.4%) in the medium-titer group, and 166 of 561 patients (29.6%) in the low-titer group. The association of anti-SARS-CoV-2 antibody levels with the risk of death from Covid-19 was moderated by mechanical ventilation status. A lower risk of death within 30 days in the high-titer group than in the low-titer group was observed among patients who had not received mechanical ventilation before transfusion (relative risk, 0.66; 95% confidence interval [CI], 0.48 to 0.91), and no effect on the risk of death was observed among patients who had received mechanical ventilation (relative risk, 1.02; 95% CI, 0.78 to 1.32).ConclusionsAmong patients hospitalized with Covid-19 who were not receiving mechanical ventilation, transfusion of plasma with higher anti-SARS-CoV-2 IgG antibody levels was associated with a lower risk of death than transfusion of plasma with lower antibody levels. (Funded by the Department of Health and Human Services and others; ClinicalTrials.gov number, NCT04338360.).
Project description:The COVID-19 pandemic revealed an urgent need for rapid profiling of neutralizing antibody responses and development of antibody therapeutics. The current Food and Drug Administration-approved serological tests do not measure antibody-mediated viral neutralization, and there is a need for standardized quantitative neutralization assays. We report a high-throughput two-step profiling approach for identifying neutralizing convalescent plasma. Screening and downselection for serum antibody binding to the receptor-binding domain are followed by quantitative neutralization testing using a chimeric vesicular stomatitis virus expressing spike protein of SARS-CoV-2 in a real-time cell analysis assay. This approach enables a predictive screening process for identifying plasma units that neutralize SARS-CoV-2. To calibrate antibody neutralizing activity in serum from convalescent plasma donors, we introduce a neutralizing antibody standard reagent composed of two human antibodies that neutralize SARS-CoV strains, including SARS-CoV-2 variants of concern. Our results provide a framework for establishing a standardized assessment of antibody-based interventions against COVID-19.
Project description:It is unclear why some SARS-CoV-2 patients readily resolve infection while others develop severe disease. By interrogating metabolic programs of immune cells in severe and recovered coronavirus disease 2019 (COVID-19) patients compared with other viral infections, we identify a unique population of T cells. These T cells express increased Voltage-Dependent Anion Channel 1 (VDAC1), accompanied by gene programs and functional characteristics linked to mitochondrial dysfunction and apoptosis. The percentage of these cells increases in elderly patients and correlates with lymphopenia. Importantly, T cell apoptosis is inhibited in vitro by targeting the oligomerization of VDAC1 or blocking caspase activity. We also observe an expansion of myeloid-derived suppressor cells with unique metabolic phenotypes specific to COVID-19, and their presence distinguishes severe from mild disease. Overall, the identification of these metabolic phenotypes provides insight into the dysfunctional immune response in acutely ill COVID-19 patients and provides a means to predict and track disease severity and/or design metabolic therapeutic regimens.