Project description:Understanding disordered structure is difficult due to insufficient information in experimental data. Here, we overcome this issue by using a combination of diffraction and simulation to investigate oxygen packing and network topology in glassy (g-) and liquid (l-) MgO-SiO2 based on a comparison with the crystalline topology. We find that packing of oxygen atoms in Mg2SiO4 is larger than that in MgSiO3, and that of the glasses is larger than that of the liquids. Moreover, topological analysis suggests that topological similarity between crystalline (c)- and g-(l-) Mg2SiO4 is the signature of low glass-forming ability (GFA), and high GFA g-(l-) MgSiO3 shows a unique glass topology, which is different from c-MgSiO3. We also find that the lowest unoccupied molecular orbital (LUMO) is a free electron-like state at a void site of magnesium atom arising from decreased oxygen coordination, which is far away from crystalline oxides in which LUMO is occupied by oxygen's 3s orbital state in g- and l-MgO-SiO2, suggesting that electronic structure does not play an important role to determine GFA. We finally concluded the GFA of MgO-SiO2 binary is dominated by the atomic structure in terms of network topology.
Project description:In this paper, high-performance indium gallium oxide (IGO) thin-film transistor (TFT) with a double-gate (DG) structure was developed using an atomic layer deposition route. The device consisting of 10-nm-thick IGO channel and 2/48-nm-thick SiO2/HfO2 dielectric was designed to be suitable for a display backplane in augmented and virtual reality applications. The fabricated DG TFTs exhibit outstanding device performances with field-effect mobility (μFE) of 65.1 ± 2.3 cm2V-1 s-1, subthreshold swing of 65 ± 1 mVdec-1, and threshold voltage (VTH) of 0.42 ± 0.05 V. Both the (μFE) and SS are considerably improved by more than two-fold in the DG IGO TFTs compared to single-gate (SG) IGO TFTs. Important finding was that the DG mode of IGO TFTs exhibits the nearly temperature independent μFE variations in contrast to the SG mode which suffers from the severe remote Coulomb scattering. The rationale for this disparity is discussed in detail based on the potential distribution along the vertical direction using technology computer-aided design simulation. Furthermore, the DG IGO TFTs exhibit a greatly improved reliability with negligible VTH shift of - 0.22 V under a harsh negative bias thermal and illumination stress condition with an electric field of - 2 MVcm-1 and blue light illumination at 80 °C for 3600 s. It could be attributed to the increased electrostatic potential that results in fast re-trapping of the electrons generated by the light-induced ionization of deep level oxygen vacancy defects.
Project description:Recently, spark plasma sintering (SPS) has become an attractive method for the preparation of solid-state ceramics. As SPS is a pressure-assisted low-temperature process, it is important to examine the effects of temperature and pressure on the structural properties of the prepared samples. In the present study, we examined the correlation between the preparation conditions and the physical and structural properties of SiO2 glasses prepared by SPS. Compared with the conventional SiO2 glass, the SPS-SiO2 glasses exhibit a higher density and elastic modulus, but a lower-height first sharp diffraction peak of the X-ray total structure factor. Micro-Raman and micro-IR spectra suggest the formation of heterogeneous regions at the interface between the SiO2 powders and graphite die. Considering the defect formation observed in optical absorption spectra, reduction reaction mainly affects the densification of SPS-SiO2 glass. Hence, the reaction at the interface is important for tailoring the structure and physical properties of solid-state materials prepared by the SPS technique.
Project description:Structure of metallic glasses fascinates as the generic amorphous structural template for ubiquitous systems. Its specification necessitates determination of the complete hierarchical structure, starting from short-range-order (SRO) → medium-range-order (MRO) → bulk structure and free volume (FV) distribution. This link has largely remained elusive since previous investigations adopted one-technique-at-a-time approach, focusing on limited aspects of any one domain. Reconstruction of structure from experimental data inversion is non-unique for many of these techniques. As a result, complete and precise structural understanding of glass has not emerged yet. In this work, we demonstrate the first experimental pathway for reconstruction of the integrated structure, for Zr67Ni33 and Zr52Ti6Al10Cu18Ni14 glasses. Our strategy engages diverse (× 7) multi-scale techniques [XAFS, 3D-APT, ABED/NBED, FEM, XRD, PAS, FHREM] on the same glass. This strategy complemented mutual limitations of techniques and corroborated common parameters to generate complete, self-consistent and precise parameters. Further, MRO domain size and inter-void separation were correlated to identify the presence of FV at MRO boundaries. This enabled the first experimental reconstruction of hierarchical subset: SRO → MRO → FV → bulk structure. The first ever image of intermediate region between MRO domains emerged from this link. We clarify that determination of all subsets is not our objective; the essence and novelty of this work lies in directing the pathway towards finite solution, in the most logical and unambiguous way.
Project description:Over the past decade, there has been significant interest in polysiloxane-based dielectric elastomers as promising soft electroactive materials. Nevertheless, the natural low permittivity of polydimethylsiloxane has limited its practical applications. In this study, we have developed silicone rubber/Al@SiO2 composites with a high dielectric constant, low dielectric loss, and high electrical breakdown strength by controlling the shell layer thickness and the content of the core-shell filler. We also investigated the dielectric behavior of the composites. The use of core-shell fillers has increased the Maxwell-Wagner-Sillars (MWS) relaxation process while reducing the dielectric loss of direct current conductance in silicone rubber composites. Moreover, the temperature dependence of the MWS relaxation time in the composites follows the Arrhenius equation. This strategy of increasing the permittivity of silicone composites through core-shell structural fillers can inspire the preparation of other high dielectric constant composites.
Project description:A new method for creating nanomaterials based on gallium oxide by ion-beam synthesis of nanocrystals of this compound in a SiO2/Si dielectric matrix has been proposed. The influence of the order of irradiation with ions of phase-forming elements (gallium and oxygen) on the chemical composition of implanted layers is reported. The separation of gallium profiles in the elemental and oxidized states is shown, even in the absence of post-implantation annealing. As a result of annealing, blue photoluminescence, associated with the recombination of donor-acceptor pairs (DAP) in Ga2O3 nanocrystals, appears in the spectrum. The structural characterization by transmission electron microscopy confirms the formation of β-Ga2O3 nanocrystals. The obtained results open up the possibility of using nanocrystalline gallium oxide inclusions in traditional CMOS technology.
Project description:Yb3+-doped phosphate glasses containing different amounts of SiO₂ were successfully synthesized by the conventional melt-quenching method. The influence mechanism of SiO₂ on the structural and spectroscopic properties was investigated systematically using the micro-Raman technique. It was worth noting that the glass with 26.7 mol % SiO₂ possessed the longest fluorescence lifetime (1.51 ms), the highest gain coefficient (1.10 ms·pm²), the maximum Stark splitting manifold of ²F7/2 level (781 cm-1), and the largest scalar crystal-field NJ and Yb3+ asymmetry degree. Micro-Raman spectra revealed that introducing SiO₂ promoted the formation of P=O linkages, but broke the P=O linkages when the SiO₂ content was greater than 26.7 mol %. Based on the previous 29Si MAS NMR experimental results, these findings further demonstrated that the formation of [SiO₆] may significantly affect the formation of P=O linkages, and thus influences the spectroscopic properties of the glass. These results indicate that phosphosilicate glasses may have potential applications as a Yb3+-doped gain medium for solid-state lasers and optical fiber amplifiers.
Project description:Nitrogen activation, especially dissociation (production of atomic nitrogen), is a key step for efficient nitrogen fixation, such as nitrogen reduction to produce ammonia. Nitrogen reduction reactions using water as a direct hydrogen source have been studied by many researchers as a green ammonia process. We studied the reaction mechanism and found that the nitrogen reduction could be significantly improved via efficient production of atomic nitrogen through electric discharge. In the present study, we focused on packed-bed dielectric barrier discharge (PbDBD) using dielectric beads as the packing material. The experimental results showed that more atomic nitrogen was produced in the nitrogen activation by the discharge in which the discharge space was filled with the dielectric beads than in the nitrogen activation by the discharge without using the dielectric beads. Then, it was clarified that the amount of atomic nitrogen increased as the dielectric constant of the beads to be filled increased, and the amount of atomic nitrogen produced increased up to 13.48 times. Based on the results, we attempted ammonia synthesis using water as a direct hydrogen source with the efficiently generated atomic nitrogen. When the atomic nitrogen gas generated by the PbDBD was sprayed onto the surface of the water phase and subsequently reacted as a plasma/liquid interfacial reaction, the nitrogen fixation rate increased by 7.26-fold compared to that when using the discharge without dielectric beads, and the ammonia production selectivity increased to 83.7%.
Project description:A sol-gel method is employed for preparing high quality lead-free glass-ceramic samples (1 - x)BCZT-xBBS-incorporating Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powder and Bi2O3-B2O3-SiO2 (BBS) glass-doped additives with different values of x (x = 0, 0.05, 0.1, 0.15). Systematic investigations are performed to comprehend the structural, dielectric and energy storage characteristics using X-ray diffraction, field-emission scanning electron microscopy, impedance and ferroelectric analyser methods. With appropriate BBS doping (x), many fundamental traits including breakdown strength, dielectric loss and energy storage density have shown significant improvements. Low doping-level samples x < 0.1 have retained the pure perovskite phase while a second glass phase appeared in samples with x ≥ 0.1. As the doping level (0.1 ≥ x > 0) is increased, the average grain size decreased to become better homogeneous materials with improved breakdown energy strengths. Excessive addition of BBS (x = 0.15) causes negative effects on microstructures and other traits. The glass-ceramic sample 0.95BCZT-0.05BBS exhibits excellent dielectric permittivity and temperature stability, with the highest energy storage density of 0.3907 J cm-3 at 130 kV cm-1. These results provide good reference to develop lead-free ceramics of high energy storage density.
Project description:A molecular dynamics study was performed on the mechanical response of thermal-pressure rejuvenated CuxZr100-x metallic glasses. The effect of temperature (50, 300, 600 K) and pressure (0-50 GPa) on the rejuvenation process and the mechanical properties of CuxZr100-x including stress-strain response, shear localization formation and elastic modulus were investigated. The thermal-pressure rejuvenation process involves transitioning the system to a higher potential energy state and a lower atomic volume, demonstrating the significant influence of pressure on rejuvenation. Our findings reveal that increasing pressure at specific temperatures and material compositions results in reduced yield stress and stress drop. They also indicate that with increasing pressure, the system undergoes a transition towards homogeneity, resulting in enhanced ductility compared to its initial amorphous state. Additionally, high temperatures contribute to lower values of Young's, shear, and bulk moduli, as well as decreased yield stress and stress drop. Consequently, the system becomes more homogeneous, promoting rejuvenation. Furthermore, we observed that the final yield strength of the system increases with higher Cu content for all structures at specific pressures and temperatures. The level of rejuvenation is additionally impacted by the amount of Cu, and structures containing varying content of Cu demonstrate varying degrees of rejuvenation. To validate our findings, we utilized Voronoi analysis, which revealed a higher fraction of densely-packed clusters in the samples. Finally, a total of 10 materials properties were calculated and explored using statistical analysis which shows there are different correlations between pressure, temperature and atomic composition with mechanical properties.