Project description:Fabrication of heterojunction and surface defective engineering, through the formation of oxygen vacancies, are among the various photocatalytic enhancement techniques. A combination of these techniques has the prospect of enhancing photocatalytic activities through improved light absorption capabilities and charge separation process of the photocatalysts. In this study, a heterojunction of black titanium oxide-zinc oxide (BTiO2-ZnO) nanocomposite was synthesized using the conventional sol-gel approach, coupled with aluminum foil-assisted NaBH4 reduction. The structure, morphology, surface properties, and optical characteristics of the synthesized material were studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-vis absorption spectra, scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscope (TEM). The XRD confirmed the successful formation of BTiO2-ZnO heterostructure, while SEM revealed the structural morphology as pseudo-spherical with slight agglomeration. BTiO2-ZnO was found to be more efficient than BTiO2 and BZnO for the removal of tetracycline with degradation efficiencies of 63, 58, and 56 % respectively. The effects of process parameters such as the amount of photocatalyst, pollutant's concentration, and the initial solution pH on photocatalytic degradation study were systematically explored. The results confirm that the formation of the heterostructure from BTiO2 and BZnO could offer a facile route to improving the catalytic degradation of tetracycline. Therefore, this study offers a novel perspective on the design of efficient metal oxide photocatalyst systems that rely on the integration of defect engineering and heterojunction for the removal of organic contaminants.
Project description:The photocatalytic activity of TiO2 based photocatalysts can be improved by structural modification and elemental doping. In this study, through rational design, one type of carbon and nitrogen co-doped TiO2 (C, N-TiO2) photocatalyst with mesoporous structure was synthesized with improved photocatalytic activity in degrading 4-nitrophenol under simulated sunlight irradiation. The photocatalytic degradation efficiency of the C, N-TiO2 was much higher than the anatase TiO2 (A-TiO2) based on absorbance and HPLC analyses. Moreover, using zebrafish embryos, we showed that the intermediate degradation compounds generated by photocatalytic degradation of 4-nitrophenol had higher toxicity than the parent compound. A repeated degradation process was necessary to render complete degradation and non-toxicity to the zebrafish embryos. Our results demonstrated the importance of evaluating the photocatalytic degradation efficiency in conjunction with the toxicity assessment of the degradation compounds.
Project description:Titanium dioxide nanoparticles were synthesized by laser pyrolysis, their surface and electronic properties were modified by gold and/or nitrogen. These materials were characterized by different techniques like X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). Time resolved conductivity (TRMC) was used to study the charge separation of electron/hole pairs. Altogether (XPS, EPR, TRMC), the physicochemical characterizations are well correlated with chemical photoactivity of the different samples. Their photocatalytic activity was evaluated for the degradation of linear carboxylic acids (C2-C3) under UV and visible illumination. The decomposition rate of acids was measured, it shows that the modification with gold increases the photoactivity while the presence of nitrogen slows down the process. Such observations are in good agreement with evolution of TRMC signals. A degradation pathway has been determined by identification of intermediate products by chromatography and EPR, results show different intermediate species. In particular EPR confirms the presence of NO2- paramagnetic centers and shows two novel N centered paramagnetic centers. A decrease of the degradation rate is observed with increase of carboxylic acid chain length.
Project description:Two series of Fe2O3/TiO2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe2O3/TiO2 for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV light irradiation was examined. The Fe2O3/TiO2 nanocomposites prepared by impregnation showed lower activity than the unmodified TiO2, mainly due to lower specific surface area caused by heat treatment. On the other hand, the Fe2O3/TiO2 nanocomposites prepared by photodeposition showed higher photocatalytic activity than the unmodified TiO2. Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe2O3(0.5)/TiO2. The improved activity of TiO2 after photodeposition of Fe2O3 was contributed to the formation of a heterojunction between the Fe2O3 and TiO2 nanoparticles that improved charge transfer and suppressed electron-hole recombination. A further investigation on the role of the active species on Fe2O3/TiO2 confirmed that the crucial active species were both holes and superoxide radicals. The Fe2O3(0.5)/TiO2 sample also showed good stability and reusability, suggesting its potential for water purification applications.
Project description:Perfluorooctanoic acid (PFOA), a typical perfluorinated carboxylic acid, is an emerging type of permanent organic pollutants that are regulated by the Stockholm Convention. The degradation of PFOA, however, is quite challenging largely due to the ultra-high stability of C-F bonds. Compared with other techniques, photocatalytic degradation offers the potential advantages of simple operation under mild conditions as well as exceptional decomposition and defluorination efficiency. Titanium dioxide (TiO2) is one of the most frequently used photocatalysts, but so far, the pristine nanosized TiO2 (e.g., the commercial P25) has been considered inefficient for PFOA degradation, since the photo-generated hydroxyl radicals from TiO2 are not able to directly attack C-F bonds. Mesoporous Sb2O3/TiO2 heterojunctions were therefore rationally designed in this work, of which the confined Sb2O3 nanoparticles in mesoporous TiO2 framework could not only tune the band structure and also increase the number of active sites for PFOA degradation. It was found that, after loading Sb2O3, the absorption of UV light was enhanced, indicating a higher efficiency of light utilization; while the band gap was reduced, which accelerated the separation of photo-generated charge carriers; and most importantly, the valence band edge of the Sb2O3/TiO2 heterojunction was significantly lifted so as to prevent the occurrence of hydroxyl radical pathway. Under the optimal ratio of Sb2O3-TiO2, the resulting catalysts managed to remove 81.7% PFOA in 2 h, with a degradation kinetics 4.2 times faster than the commercial P25. Scavenger tests and electron spin resonance spectra further revealed that such improvement was mainly attributed to the formation of superoxide radicals and photo-generated holes, in which the former drove the decarboxylation from C7F15COOH-C7F15 •, and the latter promoted the direct electron transfer for the conversion of C7F15COO--C7F15COO•. The Sb2O3/TiO2 photocatalysts were highly recyclable, with nearly 90% of the initial activity being retained after five consecutive cycles, guaranteeing the feasibility of long-term operation.
Project description:A binary direct Z-scheme LaNiO3/g-C3N4 nanocomposite photocatalyst consisted with LaNiO3 nanoparticles and g-C3N4 nanosheets was successfully synthesized by means of mechanical mixing and solvothermal methods in order to improve the photocatalytic water splitting activity. The as-prepared materials were characterized by powder X-ray diffraction (XRD), Scanning Electron microscope (SEM), Transmission Electron microscope (TEM), X-ray photoelectron spectroscope (XPS), Fourier Transform Infrared Spectroscopy (FT-IR) and N2 adsorption-desorption experiments, respectively, demonstrating the formation of interfacial interaction and heterogeneous structure in LaNiO3/g-C3N4 nanocomposites. Under UV-light irradiation, the LaNiO3/g-C3N4 samples which without the addition of any noble metal as co-catalyst behaved enhanced photocatalytic water splitting activity compared with pure LaNiO3 and g-C3N4, owing to the Z-scheme charge carrier transfer pathway. Especially, the LaNiO3/70%g-C3N4 nanocomposite reach an optimal yield of up to 3392.50 µmol g-1 in 5 h and held a maximum H2 evolution rate of 678.5 µmol h-1 g-1 that was 5 times higher than that of pure LaNiO3.
Project description:Nanoparticulate double-heterojunction photocatalysts comprising TiO2(Anatase)/WO3/TiO2(Rutile) were produced by a sol-gel method. The resulting photocatalysts exhibit clear synergistic effects when tested toward the degradation of methyl orange under both UV and visible light. Kinetic studies indicate that the degradation rate on the best double-heterojunction photocatalyst (10 wt % WO3-TiO2) depends mainly on the amount of dye concentration, contrary to pure oxides in which the degradation rate is limited by diffusion-controlled processes. The synergistic effects were confirmed through systematic and careful studies including holes and OH radical formation, X-ray diffraction, electron microscopy, elemental analysis, UV-vis diffuse reflectance spectroscopy, and surface area analysis. Our results indicate that the successful formation of a double heterojunction in the TiO2(Anatase)/WO3/TiO2(Rutile) system leads to enhanced photoactivity when compared to individual oxides and commercial TiO2 P25.
Project description:To prevent water pollution, photocatalysis is often used to remove small molecules such as drugs by generating reactive species. This study aimed to determine the photocatalytic activity of two anticancer drugs, imatinib and crizotinib, and to investigate various influences that may alter the kinetic degradation rate and ultimately the efficacy of the process. In order to obtain optimal parameters for the removal of drugs with immobilized TiO2, the mutual influence of the initial concentration of the contaminant at environmentally relevant pH values was investigated using the response surface modeling approach. The faster kinetic rate of photocatalysis was obtained at pH 5 and at the smallest applied concentration of both drugs. The photocatalytic efficiency was mostly decreased by adding various inorganic salts and organic compounds to the drug mixture. Regarding the degradation mechanism of imatinib and crizotinib, hydroxyl radicals and singlet oxygen showed a major role in photochemical reactions. The formation of seven degradation products for imatinib and fifteen for crizotinib during the optimal photocatalytic process was monitored by high-resolution mass spectrometry (HPLC-QqTOF). Since the newly formed products may pose a hazard to the environment, their toxicity was studied using Vibrio fischeri, where the significant luminescence inhibition was assessed for the mixture of crizotinib degradants during the photocatalysis from 90 to 120 min.
Project description:Fabrication of Z-scheme heterojunction photocatalysts is an ideal strategy for solving environmental problems by providing inexhaustible solar energy. A direct Z-scheme anatase TiO2/rutile TiO2 heterojunction photocatalyst was prepared using a facile B-doping strategy. The band structure and oxygen-vacancy content can be successfully tailored by controlling the amount of B-dopant. The photocatalytic performance was enhanced via the Z-scheme transfer path formed between the B doped anatase-TiO2 and rutile-TiO2, optimized band structure with markedly positively shifted band potentials, and the synergistically-mediated oxygen vacancy contents. Moreover, the optimization study indicated that 10% B-doping with the R-TiO2 to A-TiO2 weight ratio of 0.04 could achieve the highest photocatalytic performance. This work may provide an effective approach to synthesize nonmetal-doped semiconductor photocatalysts with tunable-energy structures and promote the efficiency of charge separation.
Project description:This study aimed to promote the separation of photogenerated carriers and improve the redox performance of graphite carbon nitride (g-C3N4) by synthesizing a double-heterojunction-structure photocatalyst, g-C3N4/(101)-(001)-TiO2, through the solvothermal method. The photocatalyst comprised a Z-system formed from g-C3N4 and the (101) plane of TiO2, as well as a surface heterojunction formed from the (101) and (001) planes of TiO2. The results showed that g-C3N4/(101)-(001)-TiO2 had strong photocatalytic activity and stable performance in the photodegradation of paracetamol. The active species ·O2 - and ·OH were found to play important roles in the photocatalytic degradation of paracetamol through a radical-quenching experiment. The charge-transfer mechanism was also described in detail. Overall, this work provided a new strategy for the Z-system heterojunction and opened up the application of this structure in the degradation of organic pollutants.