Project description:Microbial fuel cells (MFCs) made with different types of ceramic membranes were investigated to find a low-cost alternative to commercially available proton exchange membranes. The MFCs operated with fresh human urine as the fuel. Pyrophyllite and earthenware produced the best performance to reach power densities of 6.93 and 6.85 W m(-3), respectively, whereas mullite and alumina achieved power densities of 4.98 and 2.60 W m(-3), respectively. The results indicate the dependence of bio-film growth and activity on the type of ceramic membrane applied. The most favourable conditions were created in earthenware MFCs. The performance of the ceramic membranes was related to their physical and chemical properties determined by environmental scanning electron microscopy and energy dispersive X-ray spectroscopy. The cost of mullite, earthenware, pyrophyllite and alumina was estimated to be 13.61, 4.14, 387.96 and 177.03 GBP m(-2), respectively. The results indicate that earthenware and mullite are good substitutes for commercially available proton exchange membranes, which makes the MFC technology accessible in developing countries.
Project description:Hygienic measures are extremely important to avoid the transmission of contagious viruses and diseases. The use of an electronic faucet increases the hygiene, encourages hand washing, avoids touching the faucet for opening and closing, and it saves water, since the faucet is automatically closed. The microbial fuel cell (MFC) technology has the capability to convert environmental waste into energy. The implementation of low cost ceramic MFCs into electronic interfaces integrated in toilets, would offer a compact powering system as well as an environmentally friendly small-scale treatment plant. In this work, the use of low cost ceramic MFCs to power an L20-E electronic faucet is presented for the first time. A single MFC was capable of powering an electronic faucet with an open/close cycle of 8.5 min, with 200 ml of urine. With a footprint of 360 cm3, the MFC could easily be integrated in a toilet. The possibility to power e-toilet components with MFCs offers a sustainable energy generation system. Other electronic components including an automatic flush, could potentially be powered by MFCs and contribute to the maintenance efficiency and hygiene of the public toilets, leading to a new generation of self-sustained energy recovering e-toilets.
Project description:Salinity gradients are a vast and untapped energy resource. For every cubic meter of freshwater that mixes with seawater, approximately 0.65 kW h of theoretically recoverable energy is lost. For coastal wastewater treatment plants that discharge to the ocean, this energy, if recovered, could power the plant. The mixing entropy battery (MEB) uses battery electrodes to convert salinity gradient energy into electricity in a four-step process: (1) freshwater exchange; (2) charging in freshwater; (3) seawater exchange; and (4) discharging in seawater. Previously, we demonstrated a proof of concept, but with electrode materials that required an energy investment during the charging step. Here, we introduce a charge-free MEB with low-cost electrodes: Prussian Blue (PB) and polypyrrole (PPy). Importantly, this MEB requires no energy investment, and the electrode materials are stable with repeated cycling. The MEB equipped with PB and PPy achieved high voltage ratios (actual voltages obtained divided by the theoretical voltages) of 89.5% in wastewater effluent and 97.6% in seawater, with over 93% capacity retention after 50 cycles of operation and 97-99% over 150 cycles with a polyvinyl alcohol/sulfosuccinic acid (PVA/SSA) coating on the PB electrode.
Project description:Biocathode MFCs using microorganisms as catalysts have important advantages in lowering cost and improving sustainability. Electrode materials and microbial synergy determines biocathode MFCs performance. In this study, four materials, granular activated carbon (GAC), granular semicoke (GS), granular graphite (GG) and carbon felt cube (CFC) were used as packed cathodic materials. The microbial composition on each material and its correlation with the electricity generation performance of MFCs were investigated. Results showed that different biocathode materials had an important effect on the type of microbial species in biocathode MFCs. The microbes belonging to Bacteroidetes and Proteobacteria were the dominant phyla in the four materials packed biocathode MFCs. Comamonas of Betaproteobacteria might play significant roles in electron transfer process of GAC, GS and CFC packed biocathode MFCs, while in GG packed MFC Acidovorax may be correlated with power generation. The biocathode materials also had influence on the microbial diversity and evenness, but the differences in them were not positively related to the power production.
Project description:A 3D nitrogen-doped graphene aerogel (N-GA) as an anode material for microbial fuel cells (MFCs) is reported. Electron microscopy images reveal that the N-GA possesses hierarchical porous structure that allows efficient diffusion of both bacterial cells and electron mediators in the interior space of 3D electrode, and thus, the colonization of bacterial communities. Electrochemical impedance spectroscopic measurements further show that nitrogen doping considerably reduces the charge transfer resistance and internal resistance of GA, which helps to enhance the MFC power density. Importantly, the dual-chamber milliliter-scale MFC with N-GA anode yields an outstanding volumetric power density of 225 ± 12 W m-3 normalized to the total volume of the anodic chamber (750 ± 40 W m-3 normalized to the volume of the anode). These power densities are the highest values report for milliliter-scale MFCs with similar chamber size (25 mL) under the similar measurement conditions. The 3D N-GA electrode shows great promise for improving the power generation of MFC devices.
Project description:Thiocyanate is a toxic compound produced by the mining and metallurgy industries that needs to be remediated prior to its release into the environment. If the industry is situated at high altitudes or near the poles, economic factors require a low temperature treatment process. Microbial fuel cells are a developing technology that have the benefits of both removing such toxic compounds while recovering electrical energy. In this study, simultaneous thiocyanate degradation and electrical current generation was demonstrated and it was suggested that extracellular electron transfer to the anode occurred. Investigation of the microbial community by 16S rRNA metatranscriptome reads supported that the anode attached and planktonic anolyte consortia were dominated by a Thiobacillus-like population. Metatranscriptomic sequencing also suggested thiocyanate degradation primarily occurred via the 'cyanate' degradation pathway. The generated sulfide was metabolized via sulfite and ultimately to sulfate mediated by reverse dissimilatory sulfite reductase, APS reductase, and sulfate adenylyltransferase and the released electrons were potentially transferred to the anode via soluble electron shuttles. Finally, the ammonium from thiocyanate degradation was assimilated to glutamate as nitrogen source and carbon dioxide was fixed as carbon source. This study is one of the first to demonstrate a low temperature inorganic sulfur utilizing microbial fuel cell and the first to provide evidence for pathways of thiocyanate degradation coupled to electron transfer.
Project description:Wireless electroencephalography (EEG) of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories.
Project description:Metals are considered a suitable anode material for microbial fuel cells (MFCs) because of their high electrical conductivity. However, only a few types of metals have been used as anodes, and an extensive screening of metals has not yet been conducted. In this study, to develop a new metal anode for increased electricity generation in MFCs, 14 different metals (Al, Ti, Fe, Ni, Cu, Zn, Zr, Nb, Mo, Ag, In, Sn, Ta, and W) and 31 of their oxidized forms were comprehensively tested. Oxidized-metal anodes were prepared using flame oxidation, heat treatment, and electrochemical oxidation. The selected anodes were further evaluated in detail using air-cathode single-chambered MFCs.The untreated Mo and electrochemically oxidized Mo anodes showed high averages of maximum power densities in the screening test, followed by flame-oxidized (FO) W, FO-Fe, FO-Mo, and Sn-based anodes. The untreated Mo and FO-W anodes were selected for further evaluation. X-ray analyses revealed that the surface of the Mo anode was naturally oxidized in the presence of air, forming a layer of MoO3, a known oxidation catalyst. A high maximum power density (1296 mW/m2) was achieved using the Mo anode in the MFCs, which was superior to that obtained using the FO-W anode (1036 mW/m2). The Mo anode, but not the FO-W anode, continued to produce current without detectable corrosion until the end of operation (350 days). Geobacter was abundant in both biofilms on the Mo and FO-W anodes, as analyzed by high-throughput sequencing of the 16S rRNA gene.The screening test revealed that Mo, W, Fe, and Sn are useful MFC anode materials. The detailed analyses demonstrated that the Mo anode is a high-performance electrode with structural simplicity and long-term stability in MFCs. The anode can be easily prepared by merely shaping Mo materials to the desired forms. These properties would enable the large-scale preparation of the anode, required for practical MFC applications. This study also implies the potential involvement of Geobacter in the Mo and W cycles on Earth.
Project description:Sediment microbial fuel cells (MFCs) were developed in which the complex substrates present in the sediment could be oxidized by microbes for electron production. In this study, the functional prediction of microbial communities of anode-associated soils in sediment MFCs was investigated based on 16S rRNA genes. Four computational approaches, including BugBase, Functional Annotation of Prokaryotic Taxa (FAPROTAX), the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2), and Tax4Fun2, were applied. A total of 67, 9, 37, and 38 functional features were statistically significant. Among these functional groups, the function related to the generation of precursor metabolites and energy was the only one included in all four computational methods, and the sum total of the proportion was 93.54%. The metabolism of cofactor, carrier, and vitamin biosynthesis was included in the three methods, and the sum total of the proportion was 29.94%. The results suggested that the microbial communities usually contribute to energy metabolism, or the metabolism of cofactor, carrier, and vitamin biosynthesis might reveal the functional status in the anode of sediment MFCs.