Project description:The purpose of this study is to isolate the beneficial microorganisms whose growth is promoted in the presence of charcoal materials. We successfully isolated strain IA, whose growth is promoted on an agar plate with charcoal materials, and identified it as a novel strain of the Bacillus sp. The growth of strain IA in the liquid medium was promoted by the addition of both activated charcoal (AC) and rice husk biochar (RHB). Moreover, the sporulation of strain IA in the RHB medium and the antifungal activity of the culture supernatant of the RHB medium were much higher than those with AC. HPLC and MS analyses revealed that strain IA produced an antifungal lipopeptide iturin A, and the yield of iturin A in the RHB medium was 8 times higher than that in the medium without RHB. This is the first paper to describe the positive effect of RHB on microbial metabolisms.
Project description:In this study, the adsorption characteristics of dimethylated arsenicals to rice husk biochar (BC) and Fe/biochar composite (FeBC) were assessed through isothermal adsorption experiments and X-ray absorption spectroscopy analysis. The maximal adsorption capacities (qm) of inorganic arsenate, calculated using the Langmuir isotherm equation, were 1.28 and 6.32 mg/g for BC and FeBC, respectively. Moreover, dimethylated arsenicals did not adsorb to BC at all, and in the case of FeBC, qm values of dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)), and dimethyldithioarsinic acid (DMDTA(V)) were calculated to be 7.08, 0.43, and 0.28 mg/g, respectively. This was due to the formation of iron oxide (i.e., two-line ferrihydrite) on the surface of BC. Linear combination fitting using As K-edge X-ray absorption near edge structure spectra confirmed that all chemical forms of dimethylated arsenicals adsorbed on the two-line ferrihydrite were DMA(V). Thus, FeBC could retain highly mobile and toxic arsenicals such as DMMTA(V) and DMDTA(V)) in the environment, and transform them into DMA(V) with relatively low toxicity.
Project description:Biochar is widely used as a soil amendment to increase crop yields. However, the impact of the interaction between the biochar and microbial inoculants (e.g., biofertilizer) on plant nutrient uptake and yield in forage rice is not fully understood. A greenhouse study was conducted to evaluate the synergistic effects of rice-husk biochar and Bacillus pumilus strain TUAT-1 biofertilizer application on growth, yield, and nutrient uptake in two forage rice genotypes; Fukuhibiki and the newly bred line, LTAT-29. Positive effects of biochar and biofertilizer, alone or in a combination, on growth traits, nutrient uptake, and yield components were dependent on the rice genotypes. Biochar and TUAT-1 biofertilizer influenced the overall growth of plants positively and increased straw and above-ground biomass in both genotypes. However, although biochar application significantly increased grain yield in LTAT-29, this was not the case in Fukuhibiki. Biochar and TUAT-1 biofertilizer, either alone or combined, significantly affected plant nutrient uptake but the effect largely depended on rice genotype. Results of this study indicate that biochar amendment and TUAT-1 biofertilizer can enhance forage rice productivity depending on genotypes, and therefore, there is a need to consider plant genetic composition when evaluating the potential for crop response to these soil amendments before application on a commercial scale.
Project description:The role of biochar in improving the soil properties of problem soils is well known, but its long term impact on lowland rice soil is not well recognized. The soil quality indicators of biochar applied lowland rice soil are not widely reported. We developed soil quality index (SQI) of a biochar applied lowland rice soil based on 17 soil properties (indicators). Field experimentation consisted of six treatments such as 0.5, 1, 2, 4, 8 and 10 t ha-1 of rice husk derived biochar (RHB) along with control. An overall SQI was calculated encompassing the indicators using multivariate statistics (principal component analysis) and non-linear scoring functions after generation of minimum data set (MDS). Sequential application of RHB improved the SQI by 4.85% and 16.02% with application of 0.5 t ha-1 and 10 t ha-1 RHB, respectively, over the recommended dose of fertilizer (control). PCA-screening revealed that total organic carbon (Ctot), zinc (Zn), pH and bulk density (BD) were the main soil quality indicators for MDS with 27.79%, 26.61%, 23.67% and 14.47% contributions, respectively. Apart from Ctot, Zn is one of the major contributors to SQI and RHB application can potentially be an effective agronomic practice to improve Zn status in lowland rice soil. The overall SQI was significantly influenced by RHB application even at 0.5 t ha-1. The present study highlights that application of RHB improves the soil quality even in fertile, well managed, lowland rice soil.
Project description:Soil chromium toxicity usually caused by the tannery effluent compromises the environment and causes serious health hazards. The microbial role in strengthening biochar for its soil chromium immobilization remains largely unknown. Hence, this study evaluated the effectiveness of zinc and iron-enriched rice husk biochar (ZnBC and FeBC) with microbial combinations to facilitate the chromium immobilization in sandy loam soil. We performed morphological and molecular characterization of fungal [Trichoderma harzianum (F1), Trichoderma viride (F2)] and bacterial [Pseudomonas fluorescence (B1), Bacillus subtilis (B2)] species before their application as soil ameliorants. There were twenty-five treatments having ZnBC and FeBC @ 1.5 and 3% inoculated with bacterial and fungal isolates parallel to wastewater in triplicates. The soil analyses were conducted in three intervals each after 20, 30, and 40 days. The combination of FeBC 3%+F2 reduced the soil DTPA-extractable chromium by 96.8% after 40 days of incubation (DAI) relative to wastewater. Similarly, 92.81% reduction in chromium concentration was achieved through ZnBC 3%+B1 after 40 DAI compared to wastewater. Under the respective treatments, soil Cr(VI) retention trend increased with time such as 40 > 30 > 20 DAI. Langmuir adsorption isotherm verified the highest chromium adsorption capacity (41.6 mg g-1) with FeBC 3% at 40 DAI. Likewise, principal component analysis (PCA) and heat map disclosed electrical conductivity-chromium positive, while cation exchange capacity-chromium and pH-organic matter negative correlations. PCA suggested the ZnBC-bacterial while FeBC-fungal combinations as effective Cr(VI) immobilizers with >70% data variance at 40 DAI. Overall, the study showed that microbes + ZnBC/FeBC resulted in low pH, high OM, and CEC, which ultimately played a role in maximum Cr(VI) adsorption from wastewater applied to the soil. The study also revealed the interrelation and alternations in soil dynamics with pollution control treatments. Based on primitive soil characteristics such as soil metal concentration, its acidity, and alkalinity, the selection criteria can be set for treatments application to regulate the soil properties. Additionally, FeBC with Trichoderma viride should be tested on the field scale to remediate the Cr(VI) toxicity.
Project description:Response to fertilisation with biochar is greatest in field crops on acidic tropical soils, but limited information is available for vegetable crops. As a case-study using vegetable production in Timor-Leste, we assessed if biochar alleviates nutritional constraints to vegetables in low-nutrient soils. Field trials on vegetable crops were conducted with fertiliser combinations of rice husk biochar, phosphate and local fertiliser at three sites. A pot soil incubation trial of biochar was undertaken with soil from the acid site, where rice husk biochar had a larger effect on productivity than the other fertilisers in chili pepper, tomato and soybean with an average yield increase with biochar of 230% over control. Combining phosphate with biochar augmented the yield over biochar alone in chili pepper, tomato and soybean. At neutral and alkaline sites, fertilisation with biochar lifted mean yield over the control. Soil constraints alleviated by fertiliser were primarily from P and Zn deficiencies. Marked increases in vegetable yields, among the highest globally, were achieved with fertilisation with biochar individually and in combination with phosphate in low nutrient soil in Timor-Leste. Clearly, rice husk biochar is a promising avenue to fertilise the soil with P and Zn and increase crop productivity in Timor-Leste.
Project description:There is a significant interest in using agricultural wastes such as rice husk as a precursor for the synthesis of adsorbents and catalysts. In this article, readers will find valuable baseline characterization data related to physical and chemical properties of raw rice husk including BET specific surface area, acid value, the point of zero charge, elemental analysis, Time-of-Flight Secondary Ion Mass Spectrometric Analysis X-Ray Photoelectron Spectroscopic Analysis, and Scanning Electron Microscope-Energy Dispersive Spectroscopic Analysis. It is expected that the baseline raw data presented in this article will be useful for researchers around the world who are working on chemically modifying rice husk for valorizing them for applications in adsorption, catalysis, and energy storage.
Project description:The use of biofertilizers is becoming an economical and environmentally friendly alternative to promote sustainable agriculture. Biochar from microalgae can be applied to enhance the productivity of food crops through soil improvement, slow nutrient absorption and release, increased water uptake, and long-term mitigation of greenhouse gas sequestration. Therefore, the aim of this study was to evaluate the stimulatory effects of biochar produced from Spirulina platensis biomass on the development and seed production of rice plants. Biochar was produced by slow pyrolysis at 300°C, and characterization was performed through microscopy, chemical, and structural composition analyses. Molecular and physiological analyses were performed in rice plants submitted to different biochar concentrations (0.02, 0.1, and 0.5 mg mL-1) to assess growth and productivity parameters. Morphological and physicochemical characterization revealed a heterogeneous morphology and the presence of K and Mg minerals in the biochar composition. Chemical modification of compounds post-pyrolysis and a highly porous structure with micropores were observed. Rice plants submitted to 0.5 mg mL-1 of biochar presented a decrease in root length, followed by an increase in root dry weight. The same concentration influenced seed production, with an increase of 44% in the number of seeds per plant, 17% in the percentage of full seeds per plant, 12% in the weight of 1,000 full seeds, 53% in the seed weight per plant, and 12% in grain area. Differential proteomic analyses in shoots and roots of rice plants submitted to 0.5 mg mL-1 of biochar for 20 days revealed a fine-tuning of resource allocation towards seed production. These results suggest that biochar derived from Spirulina platensis biomass can stimulate rice seed production.
Project description:Environmental pollution is a global phenomenon and troublesome fact that poses a grave risk to all living entities. Via coupling carbonaceous feedstocks with outstanding microbial activity, kinetic experiments were established using the consortium of Proteus mirabilis and Raoultella planticola, biochar-derived sunflower seed husk (SHB) and rice straw (RSB), and their composites, which investigated at 30 °C (150 rpm) to eliminate 700 mg L-1 lead (120 h) and phenol (168 h) from synthetic wastewater. The derived biochars physicochemical properties of were studied. According to adsorption capacity (qe), consortium-SHB composites and consortium-RSB composites removed lead completely (70 mg g-1) within 48 h and 66 h, respectively. Besides, phenol was remediated entirely after 42 h and 48 h by both composite systems (69.90 mg g-1), respectively, comparing with bacterial consortium only or parent SHB and RSB. Moreover, four kinetic models were studied to describe the bioremediation process. Fractional power and Elovich models could be recommended for describing the adsorption kinetics for lead and phenol removal by the studied biomaterials with high correlation coefficient (R2 ≥ 0.91 for Pb2+ and ≥ 0.93 for phenol) and lower residual root mean square error (RMSE) and chi-square (X2). Overall, bacterial consortium-biochar composites exhibited greater remediation of lead and phenol than the sum of each single bacterial consortium and biochar systems; reflecting synergistic interaction of adsorptive capability of biochar and metabolic performance of bacterial consortium, as denoted by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The current study addressed the successful design of employing functional remediating consortium immobilized on waste biomass-derived biochar as a conducive alternative eco-sorbent and economic platform to detoxify organic and inorganic pollutants.
Project description:BackgroundRice straw and husk are globally significant sources of cellulose-rich biomass and there is great interest in converting them to bioethanol. However, rice husk is reportedly much more recalcitrant than rice straw and produces larger quantities of fermentation inhibitors. The aim of this study was to explore the underlying differences between rice straw and rice husk with reference to the composition of the pre-treatment liquors and their impacts on saccharification and fermentation. This has been carried out by developing quantitative NMR screening methods.ResultsAir-dried rice husk and rice straw from the same cultivar were used as substrates. Carbohydrate compositions were similar, whereas lignin contents differed significantly (husk: 35.3% w/w of raw material; straw 22.1% w/w of raw material). Substrates were hydrothermally pre-treated with high-pressure microwave processing across a wide range of severities. 25 compounds were identified from the liquors of both pre-treated rice husk and rice straw. However, the quantities of compounds differed between the two substrates. Fermentation inhibitors such as 5-HMF and 2-FA were highest in husk liquors, and formic acid was higher in straw liquors. At a pre-treatment severity of 3.65, twice as much ethanol was produced from rice straw (14.22% dry weight of substrate) compared with the yield from rice husk (7.55% dry weight of substrate). Above severities of 5, fermentation was inhibited in both straw and husk. In addition to inhibitors, high levels of cellulase-inhibiting xylo-oligomers and xylose were found and at much higher concentrations in rice husk liquor. At low severities, organic acids and related intracellular metabolites were released into the liquor.ConclusionsRice husk recalcitrance to saccharification is probably due to the much higher levels of lignin and, from other studies, likely high levels of silica. Therefore, if highly polluting chemical pre-treatments and multi-step biorefining processes are to be avoided, rice husk may need to be improved through selective breeding strategies, although more careful control of pre-treatment may be sufficient to reduce the levels of fermentation inhibitors, e.g. through steam explosion-induced volatilisation. For rice straw, pre-treating at severities of between 3.65 and 4.25 would give a glucose yield of between 37.5 and 40% (w/DW, dry weight of the substrate) close to the theoretical yield of 44.1% w/DW, and an insignificant yield of total inhibitors.