Project description:Previous studies have demonstrated that natural steroid compounds containing a peroxide bridge exhibited potential anti-hepatitis B virus activity. To continue our research, a simple and regioselective methodology, using Eosin Y as a clean photosensitized oxidation catalyst, was developed for the synthesis of a peroxide bridge in steroids. The method that using Eosin Y as the catalyst was exposed to visible light and furbished in high yields, did not involve tedious work-up or purification, and avoided using environmentally hazardous solvents. It can be regarded as a green protocol. Moreover, a series of cholesterol and ?-sitosterol derivatives containing a peroxide bridge were synthesized using this method and screened for their anti-HBV activity. Among the compounds synthesized in this research, 5?,8?-cyclicobioxygen-6-vinyl-3-oxo-cholesterone (1f, 3.13 ?g ml-1) had the most potent activity with inhibition rates of 77.45% ± 6.01% and 58.73% ± 8.64% on the secretion of HBsAg and HBeAg antigens, respectively, after 8 days. Further acute toxicity test showed that the LD50 value of compound 1f was 362.46 mg kg-1 after an intraperitoneal injection in mice. Moreover, structure-activity relationships of cholesterol and ?-sitosterol derivatives were briefly discussed.
Project description:Chronic hepatitis B viral infection is a significant health problem world-wide, and currently available antiviral agents suppress HBV infections, but rarely cure this disease. It is presumed that antiviral agents that target the viral nuclear reservoir of transcriptionally active cccDNA may eliminate HBV infection. Through a series of chemical optimization, we identified a new series of glyoxamide derivatives affecting HBV nucleocapsid formation and cccDNA maintenance at low nanomolar levels. Among all the compounds synthesized, GLP-26 displays a major effect on HBV DNA, HBeAg secretion and cccDNA amplification. In addition, GLP-26 shows a promising pre-clinical profile and long-term effect on viral loads in a humanized mouse model.
Project description:Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identified previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passifloraceae. An E. schimperi transcript of pt SOD-1-RPL32 confirmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passifloraceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passifloraceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales.
Project description:Abstract28 Derivatives of panaxadiol (PD) and panaxatriol were synthesized and evaluated for their anti-HBV activity on HepG 2.2.15 cells, of which 17 derivatives inhibited HBV DNA replication. Compounds 4, 9, 10, 14, and 15 showed moderate activity against HBV DNA replication with IC50 values ranged from 7.27 to 28.21 μM compared with PD. In particular, 3-O-2'-thenoyl panaxadiol (4) inhibited not only HBV DNA replication (IC50 = 16.5 μM, SI > 115.7) but also HBsAg (IC50 = 30.8 μM, SI > 62.0) and HBeAg (IC50 = 18.2 μM, SI > 105.14) secretions. Their structure-activity relationships were discussed for guiding future research toward the discovery of new anti-HBV agents.
Project description:Kaempferol, a plant-derived flavonoid, has been reported to have activity against Japanese encephalitis virus (JEV) in BHK-21 cells. To determine the broader utility of this compound, we initially evaluated the activity of kaempferol against JEV and dengue virus (DENV) in HEK293T/17 cells. Results showed no significant antiviral activity against either virus. We subsequently investigated the activity of kaempferol against both JEV and DENV in BHK-21 cells. Results showed a significant inhibition of JEV infection but, surprisingly, a significant enhancement of DENV infection. The effect of kaempferol on both host protein expression and transcription was investigated and both transcriptional and translational inhibitory effects were observed, although a more marked effect was observed on host cell protein expression. Markedly, while GRP78 was increased in DENV infected cells treated with kaempferol, it was not increased in JEV infected cells treated with kaempferol. These results show that cellular alteration induced by one compound can have opposite effects on viruses from the same family, suggesting the presence of distinct replication strategies for these two viruses.
Project description:The present study demonstrates the miquelianin or quercetin 3-O-glucuronide (compound 1) isolated from aerial parts of Euphorbia schimperi exhibited significant results for antioxidant and antidiabetic potential. The compound 1 along with kaempferol 3-O-glucuronide (compound 2) and quercetin 3-O-rhamnoside (compound 3) isolated from the same source were quantified by validated HPTLC method. Antioxidant activity was determined by chemical means in terms of ABTS radical cation and DPPH radical scavenging activity. Compound 1 showed significant scavenging activity in both ABTS and DPPH assays as compared to standard BHA. In ABTS method IC50 values of compound 1 and standard BHA is found to be 58.90 ± 3.40 µg/mL and 28.70 ± 5.20 µg/mL respectively while in DPPH assay IC50 values of Compound 1 and standard BHA is 47.20 ± 4.90 µg/mL and 34.50 ± 6.20 µg/mL respectively. Antidiabetic effect was studied through α-amylase and α-glucosidase inhibitory activity. The mechanistic approach through molecular modelling also support the strong binding sites of compound 1 which showed significant α-amylase and α-glucosidase inhibitory activities with IC50 values 128.34 ± 12.30 and 89.20 ± 9.20 µg/mL respectively as compared to acarbose 64.20 ± 5.60 and 52.40 ± 4.60 µg/mL respectively. The results of validated RP-HPTLC analyses revealed the concentration of compound 1 found to be 16.39 µg/mg and for compound 2 and compound 3 as 3.92 and 14.98 µg/mg of dried extract, respectively.
Project description:Dengue is a systemic viral infection that is transmitted to humans by Aedes mosquitoes. No vaccines or specific therapeutics are currently available for dengue. Lycorine, which is a natural plant alkaloid, has been shown to possess antiviral activities against flaviviruses. In this study, a series of novel lycorine derivatives were synthesized and assayed for their inhibition of dengue virus (DENV) in cell cultures. Among the lycorine analogues, 1-acetyllycorine exhibited the most potent anti-DENV activity (EC50 =0.4 μM) with a reduced cytotoxicity (CC50 >300 μM), which resulted in a selectivity index (CC50 /EC50 ) of more than 750. The ketones 1-acetyl-2-oxolycorine (EC50 =1.8 μM) and 2-oxolycorine (EC50 =0.5 μM) also exhibited excellent antiviral activities with low cytotoxicity. Structure-activity relationships for the lycorine derivatives against DENV are discussed. A three-dimensional quantitative structure-activity relationship model was established by using a comparative molecular-field analysis protocol in order to rationalize the experimental results. Further modifications of the hydroxy group at the C1 position with retention of a ketone at the C2 position could potentially lead to inhibitors with improved overall properties.
Project description:BackgroundTwo important flavonoids, kaempferol and quercetin possess remarkably potent biological impacts on human health. However, their structural complexity and low abundance in nature make both bulk chemical synthesis and extraction from native plants difficult. Therefore microbial production via heterologous expression of plant enzymes can be a safe and sustainable route for their production. Despite several attempts reported in microbial hosts, the production levels of kaempferol and quercetin still stay far behind compared to many other microbial-produced flavonoids.ResultsIn this study, Saccharomyces cerevisiae was engineered for high production of kaempferol and quercetin in minimal media from glucose. First, the kaempferol biosynthetic pathway was reconstructed via screening various F3H and FLS enzymes. In addition, we demonstrated that amplification of the rate-limiting enzyme AtFLS could reduce the dihydrokaempferol accumulation and improve kaempferol production. Increasing the availability of precursor malonyl-CoA further improved the production of kaempferol and quercetin. Furthermore, the highest amount of 956 mg L- 1 of kaempferol and 930 mg L- 1 of quercetin in yeast was reached in fed-batch fermentations.ConclusionsDe novo biosynthesis of kaempferol and quercetin in yeast was improved through increasing the upstream naringenin biosynthesis and debugging the flux-limiting enzymes together with fed-batch fermentations, up to gram per liter level. Our work provides a promising platform for sustainable and scalable production of kaempferol, quercetin and compounds derived thereof.
Project description:The hepatitis C viral (HCV) genome is translated through an internal ribosome entry site (IRES) as a single polyprotein precursor that is subsequently cleaved into individual mature viral proteins. Nonstructural protein 5A (NS5A) is one of these proteins that has been implicated in regulation of viral genome replication, translation from the viral IRES and viral packaging. We sought to identify cellular proteins that interact with NS5A and determine whether these interactions may play a role in viral production. Mass spectrometric analysis of coimmunoprecipitated NS5A complexes from cell extracts identified heat shock proteins (HSPs) 40 and 70. We confirmed an NS5A/HSP interaction by confocal microscopy demonstrating colocalization of NS5A with HSP40 and with HSP70. Western analysis of coimmunoprecipitated NS5A complexes further confirmed interaction of HSP40 and HSP70 with NS5A. A transient transfection, luciferase-based, tissue culture IRES assay demonstrated NS5A augmentation of HCV IRES-mediated translation, and small interfering RNA (siRNA)-mediated knockdown of HSP70 reduced this augmentation. Treatment with an inhibitor of HSP synthesis, Quercetin, markedly reduced baseline IRES activity and its augmentation by NS5A. HSP70 knockdown also modestly reduced viral protein accumulation, whereas HSP40 and HSP70 knockdown both reduced infectious viral particle production in an HCV cell culture system using the J6/JFH virus fused to the Renilla luciferase reporter. Treatment with Quercetin reduced infectious particle production at nontoxic concentrations. The marked inhibition of virus production by Quercetin may partially be related to reduction of HSP40 and HSP70 and their potential involvement in IRES translation, as well as viral morphogenesis or secretion.Quercetin may allow for dissection of the viral life cycle and has potential therapeutic use to reduce virus production with low associated toxicity.
Project description:BackgroundDespite the great progress made in the last 10 years, alternative strategies might help improving definitive treatment options against hepatitis C virus infection.MethodsWith the aim of identifying novel inhibitors of the hepatitis C virus-1b replication targeting the viral NS3 helicase, the structures of previously reported symmetrical inhibitors of this enzyme were rationally modified, and according to docking-based studies, four novel scaffolds were selected for synthesis and evaluation in the hepatitis C virus-1b subgenomic replicon assay.ResultsAmong the newly designed compounds, one new structural family was found to inhibit the hepatitis C virus-1b replication in the micromolar range. This scaffold was chosen for further exploration and different novel analogues were synthesised and evaluated.ConclusionsDifferent new inhibitors of the hepatitis C virus genotype 1b replication were identified. Some of the new compounds show mild inhibition of the NS3 helicase enzyme.