Ontology highlight
ABSTRACT: Background
The application of artificial oocyte activation (AOA) after intracytoplasmic sperm injection (ICSI) is successful in mitigating fertilization failure problems in assisted reproductive technology (ART). Nevertheless, there is no relevant study to investigate whether AOA procedures increase developmental risk by disturbing subsequent gene expression at different embryonic development stages. Methods
We used a mouse model to explore the influence of AOA treatment on pre- and post-implantation events. Firstly, the developmental potential of embryos with or without AOA treatment were assessed by the rates of fertilization and blastocyst formation. Secondly, transcriptome high-throughput sequencing was performed among the three groups (ICSI, ICSI-AOA and dICSI-AOA groups). The hierarchical clustering and Principal Component Analysis (PCA) analysis were used. Subsequently, Igf2r/Airn methylation analysis were detected using methylation-specific PCR sequencing following bisulfite treatment. Finally, birth rate and birth weight were examined following mouse embryo transfer. Results
The rates of fertilization and blastocyst formation were significantly lower in oocyte activation-deficient sperm injection group (dICSI group) when compared with the ICSI group (30.8 % vs. 84.4 %, 10.0 % vs. 41.5 %). There were 133 differentially expressed genes (DEGs) between the ICSI-AOA group and ICSI group, and 266 DEGs between the dICSI-AOA group and ICSI group. In addition, the imprinted gene, Igf2r is up regulated in AOA treatment group compared to control group. The Igf2r/Airn imprinted expression model demonstrates that AOA treatment stimulates maternal allele-specific mehtylation spreads at differentially methylated region 2, followed by the initiation of paternal imprinted Airn long non-coding (lnc) RNA, resulting in the up regulated expression of Igf2r. Furthermore, the birth weight of newborn mice originating from AOA group was significantly lower compared to that of ICSI group. The pups born following AOA treatment did not show any other abnormalities during early development. All offspring mated successfully with fertile controls. Conclusions
AOA treatment affects imprinted gene Igf2r expression and mehtylation states in mouse pre- and post-implantation embryo, which is regulated by the imprinted Airn. Nevertheless, no significant differences were found in post-natal growth of the pups in the present study. It is hoped that this study could provide valuable insights of AOA technology in assisted reproduction biology. Supplementary Information
The online version contains supplementary material available at 10.1186/s12958-021-00845-7.
SUBMITTER: Yin M
PROVIDER: S-EPMC8567642 | biostudies-literature |
REPOSITORIES: biostudies-literature