Project description:PurposeGliomas, a genetically heterogeneous group of primary central nervous system tumors, continue to pose a significant clinical challenge. Discovery of chromosomal rearrangements involving kinase genes has enabled precision therapy, and improved outcomes in several malignancies.Experimental designPositing that similar benefit could be accomplished for patients with brain cancer, we evaluated The Cancer Genome Atlas (TCGA) glioblastoma dataset. Functional validation of the oncogenic potential and inhibitory sensitivity of discovered ROS1 fusions was performed using three independent cell-based model systems, and an in vivo murine xenograft study.ResultsIn silico analysis revealed previously unreported intrachromosomal 6q22 microdeletions that generate ROS1-fusions from TCGA glioblastoma dataset. ROS1 fusions in primary glioma and ependymoma were independently corroborated from MSK-IMPACT and Foundation Medicine clinical datasets. GOPC-ROS1 is a recurrent ROS1 fusion in primary central nervous system (CNS) tumors. CEP85L-ROS1 and GOPC-ROS1 are transforming oncogenes in cells of astrocytic lineage, and amenable to pharmacologic inhibition with several ROS1 inhibitors even when occurring concurrently with other cancer hotspot aberrations frequently associated with glioblastoma. Oral monotherapy with a brain-permeable ROS1 inhibitor, lorlatinib, significantly prolonged survival in an intracranially xenografted tumor model generated from a ROS1 fusion-positive glioblastoma cell line.ConclusionsOur findings highlight that CNS tumors should be specifically interrogated for these rare intrachromosomal 6q22 microdeletion events that generate actionable ROS1 fusions. ROS1 fusions in primary brain cancer may be amenable for clinical intervention with kinase inhibitors, and this holds the potential of novel treatment paradigms in these treatment-refractory cancer types, particularly in glioblastoma.
Project description:The mutually exclusive pattern of the major driver oncogenes in lung cancer suggests that other mutually exclusive oncogenes exist. We conducted a systematic search for tyrosine kinase fusions by screening all tyrosine kinases for aberrantly high RNA expression levels of the 3' kinase domain (KD) exons relative to more 5' exons.We studied 69 patients (including five never smokers and 64 current or former smokers) with lung adenocarcinoma negative for all major mutations in KRAS, EGFR, BRAF, MEK1, HER2, and for ALK fusions (termed "pan-negative"). A NanoString-based assay was designed to query the transcripts of 90 tyrosine kinases at two points: 5' to the KD and within the KD or 3' to it. Tumor RNAs were hybridized to the NanoString probes and analyzed for outlier 3' to 5' expression ratios. Presumed novel fusion events were studied by rapid amplification of cDNA ends (RACE) and confirmatory reverse transcriptase PCR (RT-PCR) and FISH.We identified one case each of aberrant 3' to 5' ratios in ROS1 and RET. RACE isolated a GOPC-ROS1 (FIG-ROS1) fusion in the former and a KIF5B-RET fusion in the latter, both confirmed by RT-PCR. The RET rearrangement was also confirmed by FISH. The KIF5B-RET patient was one of only five never smokers in this cohort.The KIF5B-RET fusion defines an additional subset of lung cancer with a potentially targetable driver oncogene enriched in never smokers with "pan-negative" lung adenocarcinomas. We also report in lung cancer the GOPC-ROS1 fusion originally discovered and characterized in a glioma cell line.
Project description:Application of high-throughput transcriptome sequencing has spurred highly sensitive detection and discovery of gene fusions in cancer, but distinguishing potentially oncogenic fusions from random, "passenger" aberrations has proven challenging. Here we examine a distinctive group of gene fusions that involve genes present in the loci of chromosomal amplifications--a class of oncogenic aberrations that are widely prevalent in breast cancers. Integrative analysis of a panel of 14 breast cancer cell lines comparing gene fusions discovered by high-throughput transcriptome sequencing and genome-wide copy number aberrations assessed by array comparative genomic hybridization, led to the identification of 77 gene fusions, of which more than 60% were localized to amplicons including 17q12, 17q23, 20q13, chr8q, and others. Many of these fusions appeared to be recurrent or involved highly expressed oncogenic drivers, frequently fused with multiple different partners, but sometimes displaying loss of functional domains. As illustrative examples of the "amplicon-associated" gene fusions, we examined here a recurrent gene fusion involving the mediator of mammalian target of rapamycin signaling, RPS6KB1 kinase in BT-474, and the therapeutically important receptor tyrosine kinase EGFR in MDA-MB-468 breast cancer cell line. These gene fusions comprise a minor allelic fraction relative to the highly expressed full-length transcripts and encode chimera lacking the kinase domains, which do not impart dependence on the respective cells. Our study suggests that amplicon-associated gene fusions in breast cancer primarily represent a by-product of chromosomal amplifications, which constitutes a subset of passenger aberrations and should be factored accordingly during prioritization of gene fusion candidates.
Project description:BCOR has been recognized as a recurrently altered gene in a subset of pediatric tumors of the central nervous system (CNS). Here, we describe a novel BCOR-CREBBP fusion event in a case of pediatric infiltrating astrocytoma and further probe the frequency of related fusion events in CNS tumors. We analyzed biopsy samples taken from a 15-year-old male with an aggressive, unresectable and multifocal infiltrating astrocytoma. We performed RNA sequencing (RNA-seq) and targeted DNA sequencing. In the index case, the fused BCOR-CREBBP transcript comprises exons 1-4 of BCOR and exon 31 of CREBBP. The fused gene thus retains the Bcl6 interaction domain of BCOR while eliminating the domain that has been shown to interact with the polycomb group protein PCGF1. The fusion event was validated by FISH and reverse transcriptase PCR. An additional set of 177 pediatric and adult primary CNS tumors were assessed via FISH for BCOR break apart events, all of which were negative. An additional 509 adult lower grade infiltrating gliomas from the publicly available TCGA dataset were screened for BCOR or CREBBP fusions. In this set, one case was found to harbor a CREBBP-GOLGA6L2 fusion and one case a CREBBP-SRRM2 fusion. In a third patient, both BCOR-L3MBTL2 and EP300-BCOR fusions were seen. Of particular interest to this study, EP300 is a paralog of CREBBP and the breakpoint seen involves a similar region of the gene to that of the index case; however, the resultant transcript is predicted to be completely distinct. While this gene fusion may play an oncogenic role through the loss of tumor suppressor functions of BCOR and CREBBP, further screening over larger cohorts and functional validation is needed to determine the degree to which this or similar fusions are recurrent and to elucidate their oncogenic potential.
Project description:IntroductionIn this study, we sought to further characterize ROS1 protein expression in solid tumors with the complete spectrum of ROS1 genomic alterations.MethodsROS1 immunohistochemistry (IHC) was performed using the ROS1 (SP384) class I assay per manufacturer's instructions on a variety of solid tumors (n = 32) with known ROS1 genomic alterations. Genomic alterations included fusions (n = 17), gene amplifications (n = 10), and short-variant mutations (n = 11).ResultsOf the 32 cases with ROS1 IHC results, 100% (11 of 11) with canonical ROS1 fusions were positive for ROS1 IHC. Among noncanonical ROS1 fusions, only two (of five) cases with SQSTM1-ROS1 and RDX-ROS1 fusions were positive for ROS1 IHC whereas PTPRK-ROS1 (two) and TTC28-ROS1 fusions were negative for ROS1 IHC. One sample with a canonical ROS1 fusion and co-occurring ROS1 resistance mutation (6094G>A, p.G2032R) was positive for ROS1 IHC. A total of 10% (one of 10) of ROS1 amplified tumors were positive for ROS1 IHC. None of the cases (zero of five) with ROS1 short-variant mutations were positive for ROS1 protein expression.ConclusionsThese findings suggest that if ROS1 IHC was used as a screening tool for ROS1 fusion, a subset of fusion-negative tumors will reveal positive IHC staining highlighting the value of reflexing to genomic profiling to confirm the presence of a targetable fusion-driver before the initiation of therapy. In addition, the ability of comprehensive genomic profiling to detect ROS1 resistance mutations will be important for clinical decision making.
Project description:Approximately 50% of conventional inflammatory myofibroblastic tumors (IMTs) harbor ALK gene rearrangement and overexpress ALK. Recently, gene fusions involving other kinases have been implicated in the pathogenesis of IMT, including ROS1 and in 1 patient PDGFRB. However, it remains uncertain whether the emerging genotypes correlate with clinicopathologic characteristics of IMT. In this study, we expand the molecular investigation of IMT in a large cohort of different clinical presentations and analyze for potential genotype-phenotype associations. Criteria for inclusion in the study were typical morphology and tissue availability for molecular studies. The lack of ALK immunoreactivity was not an excluding factor. As overlapping gene fusions involving actionable kinases are emerging in both IMT and lung cancer, we set out to evaluate abnormalities in ALK, ROS1, PDGFRB, NTRK1, and RET by fluorescence in situ hybridization. In addition, next-generation paired-end RNA sequencing and FusionSeq algorithm was applied in 4 cases, which identified EML4-ALK fusions in 2 cases. Of the 62 IMTs (25 children and 37 adults), 35 (56%) showed ALK gene rearrangement. Of note, EML4-ALK inversion was noted in 7 (20%) cases, seen mainly in the lung and soft tissue of young children including 2 lesions from newborns. There were 6 (10%) ROS1-rearranged IMTs, all except 1 presenting in children, mainly in the lung and intra-abdominally and showed a distinctive fascicular growth of spindle cells with long cell processes, often positive for ROS1 immunohistochemistry. Two of the cases showed TFG-ROS1 fusions. Interestingly, 1 adult IMT revealed a RET gene rearrangement, a previously unreported finding. Our results show that 42/62 (68%) IMTs are characterized by kinase fusions, offering a rationale for targeted therapeutic strategies. Interestingly, 90% of fusion-negative IMTs were seen in adults, whereas >90% of pediatric IMT showed gene rearrangements. EML4-ALK inversion and ROS1 fusions emerge as common fusion abnormalities in IMT, closely recapitulating the pattern seen in lung cancer.
Project description:BackgroundGenomic fusions of the anaplastic lymphoma kinase gene (ALK) are a well-established therapy target in non-small cell lung cancer (NSCLC). From a survey of 114,200 clinical cases, we determined the prevalence of ALK rearrangements (rALK) in non-NSCLC tumors and report their responsiveness to therapies targeting ALK.Materials and methodsComprehensive genomic profiling of 114,200 relapsed and metastatic malignancies, including both solid tumors and hematolymphoid cancers, was performed using a hybrid-capture, adaptor ligation-based next-generation sequencing assay.ResultsOf 114,200 clinical samples, 21,522 (18.8%) were NSCLC and 92,678 (81.2%) were other tumor types. Of the 876 (0.8%) cases with ALK fusions (fALK) or rALK, 675 (77.1%) were NSCLC and 201 (22.9%) were other tumor types. ALK fusions were significantly more frequent in NSCLC (3.1%) than non-NSCLC (0.2%; p < .0001). Patients with non-NSCLC tumors harboring fALK were significantly younger (p < .0001) and more often female (p < .0001) than patients with fALK-positive NSCLC. EML4 was more often the fusion partner in NSCLC (83.5%) versus non-NSCLC tumors (30.9%; p < .0001).ConclusionALK rearrangements can be identified in a wide variety of epithelial and mesenchymal malignancies beyond NSCLC. Anti-ALK therapies can be effective in non-NSCLC tumors driven by fALK, and further study of therapies targeting ALK in clinical trials involving a wider variety of cancer types appears warranted.Implications for practiceRearrangements involving the ALK gene have been detected in dozens of cancer types using next-generation sequencing. Patients whose tumors harbor ALK rearrangements or fusions respond to treatment with crizotinib and alectinib, including tumors not normally associated with ALK mutations, such as non-Langerhans cell histiocytosis or renal cell carcinoma. Comprehensive genomic profiling using next-generation sequencing can detect targetable ALK fusions irrespective of tumor type or fusions partner.
Project description:The neurotrophic tropomyosin receptor kinase (NTRK) genes (NTRK1, NTRK2, and NTRK3) code for three transmembrane high-affinity tyrosine-kinase receptors for nerve growth factors (TRK-A, TRK-B, and TRK-C) which are mainly involved in nervous system development. Loss of function alterations in these genes can lead to nervous system development problems; conversely, activating alterations harbor oncogenic potential, promoting cell proliferation/survival and tumorigenesis. Chromosomal rearrangements are the most clinically relevant alterations of pathological NTRK activation, leading to constitutionally active chimeric receptors. NTRK fusions have been detected with extremely variable frequencies in many pediatric and adult cancer types, including central nervous system (CNS) tumors. These alterations can be detected by different laboratory assays (e.g., immunohistochemistry, FISH, sequencing), but each of these approaches has specific advantages and limitations which must be taken into account for an appropriate use in diagnostics or research. Moreover, therapeutic targeting of this molecular marker recently showed extreme efficacy. Considering the overall lack of effective treatments for brain neoplasms, it is expected that detection of NTRK fusions will soon become a mainstay in the diagnostic assessment of CNS tumors, and thus in-depth knowledge regarding this topic is warranted.
Project description:Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions.
Project description:The discovery of chromosomal rearrangements involving the anaplastic lymphoma kinase (ALK) gene in non-small cell lung cancer (NSCLC) has stimulated renewed interest in oncogenic fusions as potential therapeutic targets. Recently, genetic alterations in ROS1 and RET were identified in patients with NSCLC. Like ALK, genetic alterations in ROS1 and RET involve chromosomal rearrangements that result in the formation of chimeric fusion kinases capable of oncogenic transformation. Notably, ROS1 and RET rearrangements are rarely found with other genetic alterations, such as EGFR, KRAS, or ALK. This finding suggests that both ROS1 and RET are independent oncogenic drivers that may be viable therapeutic targets. In initial screening studies, ROS1 and RET rearrangements were identified at similar frequencies (approximately 1%-2%), using a variety of genotyping techniques. Importantly, patients with either ROS1 or RET rearrangements appear to have unique clinical and pathologic features that may facilitate identification and enrichment strategies. These features may in turn expedite enrollment in clinical trials evaluating genotype-directed therapies in these rare patient populations. In this review, we summarize the molecular biology, clinical features, detection, and targeting of ROS1 and RET rearrangements in NSCLC.