Unknown

Dataset Information

0

Targeting eIF4F translation complex sensitizes B-ALL cells to tyrosine kinase inhibition


ABSTRACT: The mechanistic target of rapamycin (mTOR) is a kinase whose activation is associated with poor prognosis in pre-B cell acute lymphoblastic leukemia (B-ALL). These and other findings have prompted diverse strategies for targeting mTOR signaling in B-ALL and other B-cell malignancies. In cellular models of Philadelphia Chromosome-positive (Ph+) B-ALL, mTOR kinase inhibitors (TOR-KIs) that inhibit both mTOR-complex-1 (mTORC1) and mTOR-complex-2 (mTORC2) enhance the cytotoxicity of tyrosine kinase inhibitors (TKIs) such as dasatinib. However, TOR-KIs have not shown substantial efficacy at tolerated doses in blood cancer clinical trials. Selective inhibition of mTORC1 or downstream effectors provides alternative strategies that may improve selectivity towards leukemia cells. Of particular interest is the eukaryotic initiation factor 4F (eIF4F) complex that mediates cap-dependent translation. Here we use novel chemical and genetic approaches to show that selective targeting of either mTORC1 kinase activity or components of the eIF4F complex sensitizes murine BCR-ABL-dependent pre-B leukemia cells to dasatinib. SBI-756, a small molecule inhibitor of eIF4F assembly, sensitizes human Ph+ and Ph-like B-ALL cells to dasatinib cytotoxicity without affecting survival of T lymphocytes or natural killer cells. These findings support the further evaluation of eIF4F-targeted molecules in combination therapies with TKIs in B-ALL and other blood cancers.

SUBMITTER: Vo T 

PROVIDER: S-EPMC8569117 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2020-10-25 | GSE159906 | GEO
| S-EPMC7960756 | biostudies-literature
| S-EPMC4299928 | biostudies-literature
| S-EPMC9751428 | biostudies-literature
| S-EPMC3024666 | biostudies-literature
| S-EPMC10646824 | biostudies-literature
| S-EPMC6538532 | biostudies-literature
2022-12-13 | GSE198400 | GEO
| PRJNA670855 | ENA
| S-EPMC4950506 | biostudies-literature