Project description:To investigate influences on the topicity of perfluorinated halobenzenes as halogen bond (XB) donors in the solid state, we have conducted a database survey and prepared 18 novel cocrystals of potentially ditopic (13ditfb, 14ditfb) and tritopic (135titfb) XB donors with 15 monotopic pyridines. 135titfb shows high tendency to be mono- or ditopic, but with strong bases it can act as a tritopic XB donor. DFT calculations have shown that binding of a single acceptor molecule on one of the iodine atoms of the XB donor reduces the ESPmax on the remaining iodine atoms and dramatically decreases their potential for forming further halogen bonds, which explains both the high occurrence of crystal structures where the donors do not achieve their maximal topicity and the observed differences in halogen bond lengths. Despite the fact that this effect increases with the basicity of the acceptor, when the increase of halogen bond energy due to the basicity of the acceptor compensates its decrease due to the reduction of the acidity of the donor, it enables strong bases to form cocrystals in which a potentially polytopic XB donor achieves its maximal topicity.
Project description:The factors responsible for the enhancement of the halogen bond by an adjacent hydrogen bond have been quantitatively explored by means of state-of-the-art computational methods. It is found that the strength of a halogen bond is enhanced by ca. 3 kcal/mol when the halogen donor simultaneously operates as a halogen bond donor and a hydrogen bond acceptor. This enhancement is the result of both stronger electrostatic and orbital interactions between the XB donor and the XB acceptor, which indicates a significant degree of covalency in these halogen bonds. In addition, the halogen bond strength can be easily tuned by modifying the electron density of the aryl group of the XB donor as well as the acidity of the hydrogen atoms responsible for the hydrogen bond.
Project description:Seven cocrystals of pyridone and perfluorinated halocarbons have been prepared. In all cases pairs of pyridone molecules are connected into dimers by two N-H···O hydrogen bonds, forming the characteristic pyridone homosynthon of R2 2(8) topology. These dimers further act as acceptors of halogen bonds through the two pyridone oxygen atoms, forming two (in six cases) or three (in one case) halogen bonds with the donor molecules. The stoichiometry of the cocrystals obtained and the overall topology of the supramolecular architecture depend primarily on the topicity of the halogen bond donor, with the monotopic donor yielding a cocrystal of 1:1 stoichiometry comprising discrete supramolecular complexes, the ditopic donors cocrystals of 1:2 stoichiometry comprising chains, and the tritopic donor a cocrystal of 1:2 stoichiometry comprising hydrogen- and halogen-bonded layers. The results indicate that the pyridone homosynthon is a robust and reliable supramolecular synthon that is conserved in halogen-bonded cocrystals of pyridone.
Project description:The hydrogen bond enhanced halogen bond (HBeXB) has recently been used to effectively improve anion binding, organocatalysis, and protein structure/function. In this study, we present the first systematic investigation of substituent effects in the HBeXB. NMR analysis confirmed intramolecular HBing between the amine and the electron-rich belt of the XB donor (N-H⋯I). Gas-phase density functional theory studies showed that the influence of HBing on the halogen atom is more sensitive to substitution on the HB donor ring (R1). The NMR studies revealed that the intramolecular HBing had a significant impact on receptor performance, resulting in a 50-fold improvement. Additionally, linear free energy relationship (LFER) analysis was employed for the first time to study the substituent effect in the HBeXB. The results showed that substituents on the XB donor ring (R2) had a competing effect where electron donating groups strengthened the HB and weakened the XB. Therefore, selecting an appropriate substituent on the adjacent HB donor ring (R1) could be an alternative and effective way to enhance an electron-rich XB donor. X-ray crystallographic analysis demonstrated that intramolecular HBing plays an important role in the receptor adopting the bidentate conformation. Taken together, the findings imply that modifying distal substituents that affect neighboring noncovalent interactions can have a similar impact to conventional para substitution substituent effects.
Project description:Naphthalenediimide derivates are a class of π-conjugated molecules largely investigated in the literature and used as building blocks for metal-organic frameworks or coformers for hydrogen-bond-based cocrystals. However, their tendency to establish halogen-bond interactions remains unexplored. By using a crystalline engineering approach, we report here four new cocrystals with N,N'-di(4-pyrydyl)-naphthalene-1,4,5,8-tetracarboxidiimide and diiodo-substituted coformers, easily obtained via a mechanochemical protocol. Cocrystals were characterized via NMR, electron ionization mass spectrometry, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. Crystallographic structures were then finely examined and correlated with energy framework calculations to understand the relative contribution of halogen-bond and π-π interactions toward framework stabilization.
Project description:Among non-covalent interactions, halogen bonding is emerging as a new powerful tool for supramolecular self-assembly. Here, along with a green and effective method, we report three new halogen-bonded cocrystals containing uracil derivatives and 1,2,4,5-tetrafluoro-3,6-diiodobenzene as X-bond donor coformer. These multicomponent solids were prepared both by solvent-drop grinding and solution methods and further characterized by powder and single-crystal X-ray diffraction, Fourier-transformed infrared spectroscopy, and thermal methods (TGA-DSC). In order to study the relative importance of hydrogen versus halogen bonds in the crystal packing, computational methods were applied.
Project description:The construction of more stable proteins is important in biomolecular engineering, particularly in the design of biologics-based therapeutics. We show here that replacing the tyrosine at position 18 (Y18) of T4 lysozyme with the unnatural amino acid m-chlorotyrosine ( mClY) increases both the thermal stability (increasing the melting temperature by ∼1 °C and the melting enthalpy by 3 kcal/mol) and the enzymatic activity at elevated temperatures (15% higher than that of the parent enzyme at 40 °C) of this classic enzyme. The chlorine of mClY forms a halogen bond (XB) to the carbonyl oxygen of the peptide bond at glycine 28 (G28) in a tight loop near the active site. In this case, the XB potential of the typically weak XB donor Cl is shown from quantum chemical calculations to be significantly enhanced by polarization via an intramolecular hydrogen bond (HB) from the adjacent hydroxyl substituent of the tyrosyl side chain, resulting in a distinctive synergistic HB-enhanced XB (or HeX-B for short) interaction. The larger halogens (bromine and iodine) are not well accommodated within this same loop and, consequently, do not exhibit the effects on protein stability or function associated with the HeX-B interaction. Thus, we have for the first time demonstrated that an XB can be engineered to stabilize and increase the activity of an enzyme, with the increased stabilizing potential of the HeX-B further extending the application of halogenated amino acids in the design of more stable protein therapeutics.
Project description:An asymmetric Michael addition of malononitrile to vinyl phosphonates was accomplished by hydrogen bond-enhanced bifunctional halogen bond (XB) catalysis. NMR titration experiments were used to demonstrate that halogen bonding, with the support of hydrogen-bonding, played a key role in the activation of the Michael acceptors through the phosphonate group. This is the first example of the use of XBs for the activation of organophosphorus compounds in synthesis. In addition, the iodo-perfluorophenyl group proved to be a better directing unit than different iodo- and nitro-substituted phenyl groups. The developed approach afforded products with up to excellent yields and diastereoselectivities and up to good enantioselectivities.
Project description:In this study, we investigate the halogen bond acceptor potential of oxygen and nitrogen atoms of morpholine and piperazine fragments when they are peripherally located on N,O,O or N,N,O acceptor molecules. We synthesized four acceptor molecules derived from either acetylacetone or benzoylacetone and cocrystallized them with 1,4-diiodotetrafluorobenzene and 1,3,5-triiodotrifluorobenzene. This resulted in eight cocrystals featuring different topicities and geometric dispositions of donor atoms. In all cocrystals, halogen bonds are formed with either the morpholinyl oxygen atom or the terminal piperazine nitrogen atom. The I···Omorpholine halogen bonds feature lower relative shortening values than I···Nterminal, I···Ocarbonyl, and I···Nproximal halogen bonds. The N and O halogen bond acceptor sites were evaluated through calculations of molecular electrostatic potential values.
Project description:The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.