Nanoscale neural network using non-linear spin-wave interference
Ontology highlight
ABSTRACT: We demonstrate the design of a neural network hardware, where all neuromorphic computing functions, including signal routing and nonlinear activation are performed by spin-wave propagation and interference. Weights and interconnections of the network are realized by a magnetic-field pattern that is applied on the spin-wave propagating substrate and scatters the spin waves. The interference of the scattered waves creates a mapping between the wave sources and detectors. Training the neural network is equivalent to finding the field pattern that realizes the desired input-output mapping. A custom-built micromagnetic solver, based on the Pytorch machine learning framework, is used to inverse-design the scatterer. We show that the behavior of spin waves transitions from linear to nonlinear interference at high intensities and that its computational power greatly increases in the nonlinear regime. We envision small-scale, compact and low-power neural networks that perform their entire function in the spin-wave domain. Wave based computing has sparked much interest for neuromorphic computing due to the inherent interconnectedness of such wave based approaches. Here, Papp, Porod and Csaba show how neural networks can be implemented using spin-waves, taking advantage of spin-waves intrinsic non-linearity.
SUBMITTER: Papp A
PROVIDER: S-EPMC8571280 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA