Unknown

Dataset Information

0

Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease


ABSTRACT: Medicines and agricultural biocides are often discovered using large phenotypic screens across hundreds of compounds, where visible effects of whole organisms are compared to gauge efficacy and possible modes of action. However, such analysis is often limited to human-defined and static features. Here, we introduce a novel framework that can characterize shape changes (morphodynamics) for cell-drug interactions directly from images, and use it to interpret perturbed development of Phakopsora pachyrhizi, the Asian soybean rust crop pathogen. We describe population development over a 2D space of shapes (morphospace) using two models with condition-dependent parameters: a top-down Fokker-Planck model of diffusive development over Waddington-type landscapes, and a bottom-up model of tip growth. We discover a variety of landscapes, describing phenotype transitions during growth, and identify possible perturbations in the tip growth machinery that cause this variation. This demonstrates a widely-applicable integration of unsupervised learning and biophysical modeling. Deep learning (DL) can be used to automatically extract complex features from dynamic systems. Here, the authors combine high-content imaging, DL and mechanistic models to extract and explain drug-induced morphological changes in the growth of the fungus responsible for Asian soybean rust.

SUBMITTER: Cavanagh H 

PROVIDER: S-EPMC8571353 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3715288 | biostudies-literature
| S-EPMC8362093 | biostudies-literature
| S-EPMC6852345 | biostudies-literature
| S-EPMC9617789 | biostudies-literature
2015-08-18 | E-MTAB-2911 | biostudies-arrayexpress
| S-EPMC6416213 | biostudies-other
| S-EPMC6954191 | biostudies-literature
| S-EPMC10487414 | biostudies-literature
| S-EPMC8360578 | biostudies-literature
| S-EPMC8480920 | biostudies-literature