Project description:BackgroundPatients with chronic renal insufficiency on maintenance haemodialysis face an increased risk of COVID-19 induced mortality and impaired vaccine responses. To date, only a few studies have addressed SARS-CoV-2 vaccine elicited immunity in this immunocompromised population.MethodsWe assessed immunogenicity of the mRNA vaccine BNT162b2 in at-risk dialysis patients and characterised systemic cellular and humoral immune responses in serum and saliva using interferon γ release assay and multiplex-based cytokine and immunoglobulin measurements. We further compared binding capacity and neutralization efficacy of vaccination-induced immunoglobulins against emerging SARS-CoV-2 variants Alpha, Beta, Epsilon and Cluster 5 by ACE2-RBD competition assay.FindingsPatients on maintenance haemodialysis exhibit detectable but variable cellular and humoral immune responses against SARS-CoV-2 and variants of concern after a two-dose regimen of BNT162b2. Although vaccination-induced immunoglobulins were detectable in saliva and plasma, both anti-SARS-CoV-2 IgG and neutralization efficacy was reduced compared to a vaccinated non-dialysed control population. Similarly, T-cell mediated interferon γ release after stimulation with SARS-CoV-2 spike peptides was significantly diminished.InterpretationQuantifiable humoral and cellular immune responses after BNT162b2 vaccination in individuals on maintenance haemodialysis are encouraging, but urge for longitudinal follow-up to assess longevity of immunity. Diminished virus neutralization and interferon γ responses in the face of emerging variants of concern may favour this at-risk population for re-vaccination using modified vaccines at the earliest opportunity.FundingInitiative and Networking Fund of the Helmholtz Association of German Research Centres, EU Horizon 2020 research and innovation program, State Ministry of Baden-Württemberg for Economic Affairs, Labour and Tourism.
Project description:ObjectivesSARS-CoV-2 vaccination is a crucial intervention for infection control; however, the immune response to vaccination in dialysis patients has been reported to be moderate compared with healthy adults. There are few studies available on humoral response in immunised dialysis patients compared with well-matched control group, we conducted a prospective cohort study measuring SARS-CoV-2 antibody titres in Fukushima Prefecture, Japan since September 2021.ParticipantsWe compared the titres of both anti-SARS-CoV-2 S1 IgG and neutralising antibodies of 65 haemodialysis patients (dialysis group) with 500 residents in Soma, Fukushima (control group).MethodsCoarsened exact matching was used to balance sex, age and days from the second dose between dialysis and control groups.ResultsSignificant differences in the titres of anti-SARS-CoV-2 S1 IgG and neutralising antibodies were observed between the dialysis and control groups; anti-SARS-CoV-2 S1 IgG: 168.35 (4.48-1074.29) AU/mL and 269.81 (4.72-945.96) AU/mL in dialysis and control groups, p=0.02, neutralising antibodies: 35.77 (2.94-826.06) AU/mL and 62.22 (0.00-535.57) AU/mL, p=0.007, respectively).ConclusionsWe observed significantly reduced anti-SARS-CoV-2 S1 antibody and neutralising antibodies in haemodialysis patients compared with cohorts matched for duration after vaccination. Patients receiving haemodialysis should be carefully monitored for immunological responses to the vaccination and COVID-19 infection.
Project description:ObjectiveImmunosuppressive agents are known to interfere with T and/or B lymphocytes, which are required to mount an adequate serologic response. Therefore, we aim to investigate the antibody response to SARS-CoV-2 in liver transplant (LT) recipients after COVID-19.DesignProspective multicentre case-control study, analysing antibodies against the nucleocapsid protein, spike (S) protein of SARS-CoV-2 and their neutralising activity in LT recipients with confirmed SARS-CoV-2 infection (COVID-19-LT) compared with immunocompetent patients (COVID-19-immunocompetent) and LT recipients without COVID-19 symptoms (non-COVID-19-LT).ResultsOverall, 35 LT recipients were included in the COVID-19-LT cohort. 35 and 70 subjects fulfilling the matching criteria were assigned to the COVID-19-immunocompetent and non-COVID-19-LT cohorts, respectively. We showed that LT recipients, despite immunosuppression and less symptoms, mounted a detectable antinucleocapsid antibody titre in 80% of the cases, although significantly lower compared with the COVID-19-immunocompetent cohort (3.73 vs 7.36 index level, p<0.001). When analysing anti-S antibody response, no difference in positivity rate was found between the COVID-19-LT and COVID-19-immunocompetent cohorts (97.1% vs 100%, p=0.314). Functional antibody testing showed neutralising activity in 82.9% of LT recipients (vs 100% in COVID-19-immunocompetent cohort, p=0.024).ConclusionsOur findings suggest that the humoral response of LT recipients is only slightly lower than expected, compared with COVID-19 immunocompetent controls. Testing for anti-S antibodies alone can lead to an overestimation of the neutralising ability in LT recipients. Altogether, routine antibody testing against separate SARS-CoV-2 antigens and functional testing show that the far majority of LT patients are capable of mounting an adequate antibody response with neutralising ability.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing a global pandemic. The antigen specificity and kinetics of the antibody response mounted against this novel virus are not understood in detail. Here, we report that subjects with a more severe SARS-CoV-2 infection exhibit a larger antibody response against the spike and nucleocapsid protein and epitope spreading to subdominant viral antigens, such as open reading frame 8 and non-structural proteins. Subjects with a greater antibody response mounted a larger memory B cell response against the spike, but not the nucleocapsid protein. Additionally, we revealed that antibodies against the spike are still capable of binding the D614G spike mutant and cross-react with the SARS-CoV-1 receptor binding domain. Together, this study reveals that subjects with a more severe SARS-CoV-2 infection exhibit a greater overall antibody response to the spike and nucleocapsid protein and a larger memory B cell response against the spike.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing a global pandemic. The antigen specificity of the antibody response mounted against this novel virus is not understood in detail. Here, we report that subjects with a more severe SARS-CoV-2 infection exhibit a larger antibody response against the spike and nucleocapsid protein and epitope spreading to subdominant viral antigens, such as open reading frame 8 and nonstructural proteins. Subjects with a greater antibody response mounted a larger memory B cell response against the spike, but not the nucleocapsid protein. Additionally, we revealed that antibodies against the spike are still capable of binding the D614G spike mutant and cross-react with the SARS-CoV-1 receptor binding domain. Together, this study reveals that subjects with a more severe SARS-CoV-2 infection exhibit a greater overall antibody response to the spike and nucleocapsid protein and a larger memory B cell response against the spike.IMPORTANCE With the ongoing pandemic, it is critical to understand how natural immunity against SARS-CoV-2 and COVID-19 develops. We have identified that subjects with more severe COVID-19 disease mount a more robust and neutralizing antibody response against SARS-CoV-2 spike protein. Subjects who mounted a larger response against the spike also mounted antibody responses against other viral antigens, including the nucleocapsid protein and ORF8. Additionally, this study reveals that subjects with more severe disease mount a larger memory B cell response against the spike. These data suggest that subjects with more severe COVID-19 disease are likely better protected from reinfection with SARS-CoV-2.
Project description:As the SARS-CoV-2 pandemic continues to rage worldwide, the emergence of numerous variants of concern (VOC) represents a challenge for the vaccinal protective efficacy and the reliability of commercially available high-throughput immunoassays. Our study demonstrates the administration of two doses of the BNT162b2 vaccine that elicited a robust SARS-CoV-2-specific immune response which was assessed up to 3 months after full vaccination in a cohort of 37 health care workers (HCWs). SARS-CoV-2-specific antibody response, evaluated by four commercially available chemiluminescence immunoassays (CLIA), was qualitatively consistent with the results provided by the gold-standard in vitro neutralization assay (NTA). However, we could not observe a correlation between the quantity of the antibody detected by CLIA assays and their neutralizing activity tested by NTA. Almost all subjects developed a SARS-CoV-2-specific T-cell response. Moreover, vaccinated HCWs developed a similar protective neutralizing antibodies response against the EU (B.1), Alpha (B.1.1.7), Gamma (P.1), and Eta (B.1.525) SARS-CoV-2 variants, while Beta (B.1.351) and Delta (B.1.617.2) strains displayed a consistent partial immune evasion. These results underline the importance of a solid vaccine-elicited immune response and a robust antibody titre. We believe that these relevant results should be taken into consideration in the definition of future vaccinal strategies.
Project description:According to preliminary data, seroconversion after mRNA SARS-CoV-2 vaccination might be unsatisfactory in Kidney Transplant Recipients (KTRs). However, it is unknown if seronegative patients develop at least a cellular response that could offer a certain grade of protection against SARS-CoV-2. To answer this question, we prospectively studied 148 recipients of either kidney (133) or kidney-pancreas (15) grafts with assessment of IgM/IgG spike (S) antibodies and ELISpot against the nucleocapside (N) and the S protein at baseline and 2 weeks after receiving the second dose of the mRNA-1273 (Moderna) vaccine. At baseline, 31 patients (20.9%) had either IgM/IgG or ELISpot positivity and were considered to be SARS-CoV-2-pre-immunized, while 117 (79.1%) patients had no signs of either cellular or humoral response and were considered SARS-CoV-2-naïve. After vaccination, naïve patients who developed either humoral or cellular response were finally 65.0%, of which 29.9% developed either IgG or IgM and 35.0% S-ELISpot positivity. Factors associated with vaccine unresponsiveness were diabetes and treatment with antithymocytes globulins during the last year. Side effects were consistent with that of the pivotal trial and no DSAs developed after vaccination. In conclusion, mRNA-1273 SARS-CoV-2 vaccine elicits either cellular or humoral response in almost two thirds of KTRs.
Project description:BackgroundUnravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights into the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. We aimed at determining (a) the association between anti-SARS-CoV-2 and anti-apoA-1 humoral response and (b) the degree of linear homology between SARS-CoV-2, apoA-1 and Toll-like receptor 2 (TLR2) epitopes.DesignBioinformatics modelling coupled with mimic peptides engineering and competition experiments were used to assess epitopes sequence homologies. Anti-SARS-CoV-2 and anti-apoA-1 IgG as well as cytokines were assessed by immunoassays on a case-control (n = 101), an intensive care unit (ICU; n = 126) and a general population cohort (n = 663) with available samples in the pre and post-pandemic period.ResultsUsing bioinformatics modelling, linear sequence homologies between apoA-1, TLR2 and Spike epitopes were identified but without experimental evidence of cross-reactivity. Overall, anti-apoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (P < .0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-day kinetics, reaching 82% for anti-apoA-1 seropositivity. In the general population, SARS-CoV-2-exposed individuals displayed higher anti-apoA-1 IgG seropositivity rates than nonexposed ones (34% vs 16.8%; P = .004).ConclusionCOVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.
Project description:BackgroundTo optimise the use of available SARS-CoV-2 vaccines, some advocate delaying second vaccination for individuals infected within six months. We studied whether post-vaccination immune response is equally potent in individuals infected over six months prior to vaccination.MethodsWe tested serum IgG binding to SARS-CoV-2 spike protein and neutralising capacity in 110 healthcare workers, before and after both BNT162b2 messenger RNA (mRNA) vaccinations. We compared outcomes between participants with more recent infection (n = 18, median two months, IQR 2-3), with infection-vaccination interval over six months (n = 19, median nine months, IQR 9-10), and to those not previously infected (n = 73).FindingsBoth recently and earlier infected participants showed comparable humoral immune responses after a single mRNA vaccination, while exceeding those of previously uninfected persons after two vaccinations with 2.5 fold (p = 0.003) and 3.4 fold (p < 0.001) for binding antibody levels, and 6.4 and 7.2 fold for neutralisation titres, respectively (both p < 0.001). The second vaccine dose yielded no further substantial improvement of the humoral response in the previously infected participants (0.97 fold, p = 0.92), while it was associated with a 4 fold increase in antibody binding levels and 18 fold increase in neutralisation titres in previously uninfected participants (both p < 0.001). Adjustment for potential confounding of sex and age did not affect these findings.InterpretationDelaying the second vaccination in individuals infected up to ten months prior may constitute a more efficient use of limited vaccine supplies.FundingNetherlands Organization for Health Research and Development ZonMw; Corona Research Fund Amsterdam UMC; Bill & Melinda Gates Foundation.