Ontology highlight
ABSTRACT: Introduction
Face masks are regarded as effective Personal Protective Equipment (PPE) during the COVID-19 pandemic. However, the dominant polypropylene (PP)-based masks are devoid of antiviral/antibacterial activities and create enormous environmental burdens after disposal.Objectives
Here we report a facile and potentially scalable method to fabricate biodegradable, breathable, and biocidal cellulose nonwovens (BCNWs) to address both environmental and hygienic problems of commercially available face masks.Methods
TEMPO-oxidized cellulose nonwovens are rendered antiviral/antibacterial via covalent bonding with disinfecting polyhexamethylene guanidine or neomycin sulfate through carbodiimide coupling chemistry.Results
The obtained results showed that the BCNWs have virucidal rate of >99.14%, bactericidal efficiency of >99.51%, no leaching-out effect, and excellent air permeability of >1111.5 mm s-1. More importantly, the as-prepared BCNWs can inactivate SARS-CoV-2 instantly.Conclusions
This strategy provides a new platform for the green fabrication of multifunctional cellulose nonwovens as scalable bio-protective layers with superior performance for various PPE in fighting COVID-19 or future pandemics. Additionally, replacing the non-biodegradable non-antimicrobial PP-based masks with the cellulose-based masks can reduce the plastic wastes and lower the greenhouse gas production from the incineration of disposed masks.
SUBMITTER: Deng C
PROVIDER: S-EPMC8577049 | biostudies-literature |
REPOSITORIES: biostudies-literature