Unknown

Dataset Information

0

Radio-frequency exposure of the yellow fever mosquito (A. aegypti) from 2 to 240 GHz


ABSTRACT: Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths comparable in size to insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Aedes aegypti), a vector for diseases such as yellow and dengue fever, favors warm climates. Being exposed to higher frequency RF EMFs causing possible dielectric heating, could have an influence on behavior, physiology and morphology, and could be a possible factor for introduction of the species in regions where the yellow fever mosquito normally does not appear. In this study, the influence of far field RF exposure on A. aegypti was examined between 2 and 240 GHz. Using Finite Difference Time Domain (FDTD) simulations, the distribution of the electric field in and around the insect and the absorbed RF power were found for six different mosquito models (three male, three female). The 3D models were created from micro-CT scans of real mosquitoes. The dielectric properties used in the simulation were measured from a mixture of homogenized A. aegypti. For a given incident RF power, the absorption increases with increasing frequency between 2 and 90 GHz with a maximum between 90 and 240 GHz. The absorption was maximal in the region where the wavelength matches the size of the mosquito. For a same incident field strength, the power absorption by the mosquito is 16 times higher at 60 GHz than at 6 GHz. The higher absorption of RF power by future technologies can result in dielectric heating and potentially influence the biology of this mosquito. Author summary Radio Frequency (RF) exposure of the A. aegypti mosquito can lead to absorption and dielectric heating. We used Finite Difference Time Domain (FDTD) simulations between 2 and 240 GHz to study the RF power absorbed by the insect and the distribution of the electric field (EF) in and around it. For this, three male and three female mosquito 3D models were constructed from micro-CT scans. We used high resolution models and dielectric properties, both retrieved from real insects, to gain realistic outputs. For increasing frequency up to 90 GHz, the absorbed power increases for all models. At 90–120 GHz, the wavelength is comparable to the body size, and the increase in absorbed powers reaches a maximum. Therefore, moving to higher frequencies in 5G, implies higher absorbed power and possibly higher dielectric heating of the insect.

SUBMITTER: De Borre E 

PROVIDER: S-EPMC8577778 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2018-08-23 | GSE113256 | GEO
| S-EPMC1154223 | biostudies-other
| S-EPMC6746732 | biostudies-literature
| S-EPMC5560810 | biostudies-other
| S-EPMC3014591 | biostudies-literature
| S-EPMC2851739 | biostudies-literature
| S-EPMC19908 | biostudies-literature
2012-08-15 | GSE34319 | GEO
| S-EPMC7575095 | biostudies-literature
| S-EPMC8954748 | biostudies-literature