Project description:Limited data are available on breakthrough COVID-19 in patients with hematologic malignancy (HM) after anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. Adult patients with HM, ≥1 dose of anti-SARS-CoV-2 vaccine, and breakthrough COVID-19 between January 2021 and March 2022 were analyzed. A total of 1548 cases were included, mainly lymphoid malignancies (1181 cases, 76%). After viral sequencing in 753 cases (49%), the Omicron variant was prevalent (517, 68.7%). Most of the patients received ≤2 vaccine doses before COVID-19 (1419, 91%), mostly mRNA-based (1377, 89%). Overall, 906 patients (59%) received COVID-19-specific treatment. After 30-day follow-up from COVID-19 diagnosis, 143 patients (9%) died. The mortality rate in patients with the Omicron variant was 7.9%, comparable to other variants, with a significantly lower 30-day mortality rate than in the prevaccine era (31%). In the univariable analysis, older age (P < .001), active HM (P < .001), and severe and critical COVID-19 (P = .007 and P < .001, respectively) were associated with mortality. Conversely, patients receiving monoclonal antibodies, even for severe or critical COVID-19, had a lower mortality rate (P < .001). In the multivariable model, older age, active disease, critical COVID-19, and 2-3 comorbidities were correlated with a higher mortality, whereas monoclonal antibody administration, alone (P < .001) or combined with antivirals (P = .009), was protective. Although mortality is significantly lower than in the prevaccination era, breakthrough COVID-19 in HM is still associated with considerable mortality. Death rate was lower in patients who received monoclonal antibodies, alone or in combination with antivirals.
Project description:Background Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. Methods The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. Results The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March–May 2020) and the second wave (October–December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. Conclusions This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01177-0.
Project description:BackgroundNirmatrelvir/ritonavir treatment decreases the hospitalisation rate in immunocompetent patients with COVID-19, but data on efficacy in patients with haematological malignancy are scarce. Here, we describe the outcome of nirmatrelvir/ritonavir treatment in a large cohort of the latter patients.MethodsThis is a retrospective cohort study from the multicentre EPICOVIDEHA registry (NCT04733729) on patients with haematological malignancy, who were diagnosed with COVID-19 between January and September 2022. Patients receiving nirmatrelvir/ritonavir were compared to those who did not. A logistic regression was run to determine factors associated with nirmatrelvir/ritonavir administration in our sample. Mortality between treatment groups was assessed with Kaplan-Meier survival plots after matching all the patients with a propensity score. Additionally, a Cox regression was modelled to detect factors associated with mortality in patients receiving nirmatrelvir/ritonavir.FindingsA total of 1859 patients were analysed, 117 (6%) were treated with nirmatrelvir/ritonavir, 1742 (94%) were treated otherwise. Of 117 patients receiving nirmatrelvir/ritonavir, 80% had received ≥1 anti-SARS-CoV-2 vaccine dose before COVID-19 onset, 13% of which received a 2nd vaccine booster. 5% were admitted to ICU. Nirmatrelvir/ritonavir treatment was associated with the presence of extrapulmonary symptoms at COVID-19 onset, for example anosmia, fever, rhinitis, or sinusitis (aOR 2.509, 95%CI 1.448-4.347) and 2nd vaccine booster (aOR 3.624, 95%CI 1.619-8.109). Chronic pulmonary disease (aOR 0.261, 95%CI 0.093-0.732) and obesity (aOR 0.105, 95%CI 0.014-0.776) were not associated with nirmatrelvir/ritonavir use. After propensity score matching, day-30 mortality rate in patients treated with nirmatrelvir/ritonavir was 2%, significantly lower than in patients with SARS-CoV-2 directed treatment other than nirmatrelvir/ritonavir (11%, p = 0.036). No factor was observed explaining the mortality difference in patients after nirmatrelvir/ritonavir administration.InterpretationHaematological malignancy patients were more likely to receive nirmatrelvir/ritonavir when reporting extrapulmonary symptoms or 2nd vaccine booster at COVID-19 onset, as opposed to chronic pulmonary disease and obesity. The mortality rate in patients treated with nirmatrelvir/ritonavir was lower than in patients with targeted drugs other than nirmatrelvir/ritonavir.FundingEPICOVIDEHA has received funds from Optics COMMIT (COVID-19 Unmet Medical Needs and Associated Research Extension) COVID-19 RFP program by GILEAD Science, United States (Project 2020-8223).
Project description:Only few studies have analyzed the efficacy of tixagevimab/cilgavimab to prevent severe Coronavirus disease 2019 (COVID-19) and related complications in hematologic malignancies (HM) patients. Here, we report cases of breakthrough COVID-19 after prophylactic tixagevimab/cilgavimab from the EPICOVIDEHA registry). We identified 47 patients that had received prophylaxis with tixagevimab/cilgavimab in the EPICOVIDEHA registry. Lymphoproliferative disorders (44/47, 93.6%) were the main underlying HM. SARS-CoV-2 strains were genotyped in 7 (14.9%) cases only, and all belonged to the omicron variant. Forty (85.1%) patients had received vaccinations prior to tixagevimab/cilgavimab, the majority of them with at least two doses. Eleven (23.4%) patients had a mild SARS-CoV-2 infection, 21 (44.7%) a moderate infection, while 8 (17.0%) had severe infection and 2 (4.3%) critical. Thirty-six (76.6%) patients were treated, either with monoclonal antibodies, antivirals, corticosteroids, or with combination schemes. Overall, 10 (21.3%) were admitted to a hospital. Among these, two (4.3%) were transferred to intensive care unit and one (2.1%) of them died. Our data seem to show that the use of tixagevimab/cilgavimab may lead to a COVID-19 severity reduction in HM patients; however, further studies should incorporate further HM patients to confirm the best drug administration strategies in immunocompromised patients.
Project description:Background/aimThe COVID-19 pandemic is a unique challenge to the care of patients with hematological malignancies. We aim to provide supportive guidance to clinicians making individual patients decisions during the COVID-19 pandemic, in particular during periods that access to healthcare resources may be limited.ConclusionThis review also provides recommendations, which are convenient in evaluating indications for therapy, reducing therapy-associated immunosuppression, and reducing healthcare utilization in patients with specific hematological malignancies in the COVID-19 era. Specific decisions regarding treatment of hematological malignancies will need to be individualized, based on disease risk, risk of immunosuppression, rates of community transmission of SARS-CoV-2, and available local healthcare resources.
Project description:PurposeCOVID-19 infection resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to spread across the globe in early 2020. Patients with hematologic malignancies are supposed to have an increased risk of mortality from coronavirus disease of 2019 (COVID-19) infection. From Pakistan, we report the analysis of the outcome and interaction between patient demographics and tumor subtype and COVID-19 infection and hematological malignancy.Patients and methodsThis multicenter, retrospective study included adult patients with a history of histologically proven hematological malignancies who were tested positive for COVID-19 via PCR presented at the oncology department of 5 tertiary care hospitals in Pakistan from February to August 2020. A patient with any known hematological malignancy who was positive for COVID-19 on RT-PCR, was included in the study. Chi-square test and Cox-regression hazard regression model was applied considering p ≤ 0.05 significant.ResultsA total of 107 patients with hematological malignancies were diagnosed with COVID-19, out of which 82 (76.64%) were alive, and 25 (23.36%) were dead. The significant hematological malignancy was B-cell Lymphoma in dead 4 (16.00%) and alive group 21 (25.61%), respectively. The majority of the patients in both the dead and alive group were on active treatment for hematological malignancy while they came positive for COVID-19 [21 (84.00%) & 48 (58.54%) p 0.020]. All patients in the dead group were admitted to the hospital 25 (100.00%), and among these, 14 (56.00%) were admitted in ICU with a median 11 (6-16.5) number of days. Among those who had contact exposure, the hazard of survival or death in patients with hematological malignancies and COVID-19 positive was 2.18 (CI: 1.90-4.44) times and 3.10 (CI: 2.73-4.60) times in patients with travel history compared to no exposure history (p 0.001).ConclusionTaken together, this data supports the emerging consensus that patients with hematologic malignancies experience significant morbidity and mortality resulting from COVID-19 infection.
Project description:Background and objectivesBlinatumomab (BLINCYTO®) is a novel bispecific T cell engager (BiTE®) approved in the USA for the treatment of relapsed or refractory B cell precursor acute lymphoblastic leukemia (ALL) in children and adults, as well as minimal residual disease ALL in adults. This analysis characterized the population pharmacokinetics of intravenous blinatumomab in pediatric and adult patients.MethodsA total of 2417 serum concentrations of blinatumomab from 674 patients, including adult (n = 628) and pediatric patients (n = 46), from eight clinical studies were analyzed. The impact of covariates on pharmacokinetic parameters were explored, and significant covariates were further evaluated using a simulation approach.ResultsBlinatumomab pharmacokinetics were described by a one-compartment linear model with first-order elimination, a clearance (CL) of 2.22 L/h, and a central volume of 5.98 L. A statistically significant effect of body surface area (BSA) on CL was observed. The smallest BSA of 0.37 m2 in the pediatric population was associated with a 63% reduction in blinatumomab systemic CL, relative to an adult patient with the median BSA (1.88 m2), supporting the use of BSA-based dosing in patients of lower bodyweight. The BSA effect was minimal, with a ≤ 25% change in CL over the range of BSA in adults, supporting no need for BSA-based dosing.ConclusionsBlinatumomab pharmacokinetics were adequately described by a one-compartment linear model with first-order elimination. No covariates other than BSA on CL were identified as significant. BSA-based dosing should be considered for lightweight patients to minimize inter-subject variability in blinatumomab exposure.