Unknown

Dataset Information

0

Development of an In Vitro Chloroplast Splicing System: Sequences Required for Correct pre-mRNA Splicing.


ABSTRACT: Chloroplast genomes in land plants include approximately 20 intron-containing genes. Most of the introns are similar to the group II introns found in fungi, algae and some bacteria, but no self-splicing has been reported. To analyze splicing reactions in chloroplasts, we developed a tobacco (Nicotiana tabacum) chloroplast-based in vitro system. We optimized the splicing reaction using atpF precursor messenger RNA (pre-mRNA). Our system requires a high ATP concentration, whereas ATP is not necessary for self-splicing group II introns. Self-splicing group II introns possess two exon-binding sites (EBS1 and 2) complementary to two intron-binding sites (IBS1 and 2) in the 3' end of 5' exons, which are involved in 5' splice-site selection. Using our in vitro system and atpF pre-mRNA, we analyzed short sequences corresponding to the above EBSs and IBSs. Mutation analyses revealed that EBS1-IBS1 pairing is essential, while EBS2-IBS2 pairing is important but not crucial for splicing. The first 3' exon nucleotide determines the 3' splice sites of self-splicing introns. However, mutations to this nucleotide in atpF pre-mRNA did not affect splicing. This result suggests that the mechanism underlying chloroplast pre-mRNA splicing differs partly from that mediating the self-splicing of group II introns.

SUBMITTER: Inaba-Hasegawa K 

PROVIDER: S-EPMC8579278 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development of an In Vitro Chloroplast Splicing System: Sequences Required for Correct pre-mRNA Splicing.

Inaba-Hasegawa Keiko K   Ohmura Ayumi A   Nomura Masayo M   Sugiura Masahiro M  

Plant & cell physiology 20211101 8


Chloroplast genomes in land plants include approximately 20 intron-containing genes. Most of the introns are similar to the group II introns found in fungi, algae and some bacteria, but no self-splicing has been reported. To analyze splicing reactions in chloroplasts, we developed a tobacco (Nicotiana tabacum) chloroplast-based in vitro system. We optimized the splicing reaction using atpF precursor messenger RNA (pre-mRNA). Our system requires a high ATP concentration, whereas ATP is not necess  ...[more]

Similar Datasets

| S-EPMC5757305 | biostudies-literature
| S-EPMC5027415 | biostudies-literature
| S-EPMC4466706 | biostudies-literature
| S-EPMC8537648 | biostudies-literature
| S-EPMC4067169 | biostudies-literature
| S-EPMC5499870 | biostudies-literature
| S-EPMC2881217 | biostudies-literature
| S-EPMC7039186 | biostudies-literature
| S-EPMC3874199 | biostudies-literature
| S-EPMC4198038 | biostudies-literature