Project description:Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young's modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young's modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications.
Project description:Spatial variations in fiber alignment (and, therefore, in mechanical anisotropy) play a central role in the excellent toughness and fatigue characteristics of many biological materials. In this work, we examine the effect of fiber alignment in soft composites, including both "in-plane" and "out-of-plane" fiber arrangements. We take inspiration from the spatial variations of fiber alignment found in the aorta to three-dimensionally (3D) print soft, tough silicone composites with an excellent combination of stiffness, toughness, and fatigue threshold, regardless of the direction of loading. These aorta-inspired composites exhibit mechanical properties comparable to skin, with excellent combinations of stiffness and toughness not previously observed in synthetic soft materials.
Project description:As soft robots have been popular, interest in soft actuators is also increasing. In particular, new types of actuators have been proposed through biomimetics. An actuator that we proposed in this study was inspired by a motor cell that enables plants to move. This actuator is an electrostatic actuator utilizing electrostatic attraction and elastic force, and can be used repeatedly. In addition, this actuator, which can produce large and diverse movements by collecting individual movements like a cell, has a wide application field. As one of them, this actuator is stacked to construct a layer structure and propose an application example. In addition, a piezo sensor was built inside the actuator and real-time motion monitoring was attempted. As a result, the point laser sensor value and the piezo sensor value coincided with each other, which means that it is possible to detect motion in real-time with the built-in sensor.
Project description:Mussel-inspired adhesive hydrogels represent innovative candidate medical sealants or glues. In the present work, we describe an enzyme-degradable mussel-inspired adhesive hydrogel formulation, achieved by incorporating minimal elastase substrate peptide Ala-Ala into the branched poly(ethylene glycol) (PEG) macromonomer structure. The system takes advantage of neutrophil elastase expression upregulation and secretion from neutrophils upon recruitment to wounded or inflamed tissue. By integrating adhesive degradation behaviors that respond to cellular cues, we expand the functional range of our mussel-inspired adhesive hydrogel platforms. Rapid (<1 min) and simultaneous gelation and adhesion of the proteolytically active, catechol-terminated precursor macromonomer was achieved by addition of sodium periodate oxidant. Rheological analysis and equilibrium swelling studies demonstrated that the hydrogel is appropriate for soft tissue-contacting applications. Notably, hydrogel storage modulus (G') achieved values on the order of 10 kPa, and strain at failure exceeded 200% strain. Lap shear testing confirmed the material's adhesive behavior (shear strength: 30.4 ± 3.39 kPa). Although adhesive hydrogel degradation was not observed during short-term (27 h) in vitro treatment with neutrophil elastase, in vivo degradation proceeded over several months following dorsal subcutaneous implantation in mice. This work represents the first example of an enzymatically degradable mussel-inspired adhesive and expands the potential biomedical applications of this family of materials.
Project description:In this paper, we present a gecko-inspired soft robot that is able to climb inclined, flat surfaces. By changing the design of the previous version, the energy consumption of the robot could be reduced, and at the same time, its ability to climb and its speed of movement could be increased. As a result, the new prototype consumes only about a third of the energy of the previous version and manages to climb slopes of up to 84°. In the horizontal plane, its velocity could be increased from 2 to 6 cm/s. We also provide a detailed analysis of the robot's straight gait.
Project description:Rationally designed nanoparticles that can bind toxins show great promise for detoxification. However, the conventional intravenous administration of nanoparticles for detoxification often leads to nanoparticle accumulation in the liver, posing a risk of secondary poisoning especially in liver-failure patients. Here we present a liver-inspired three-dimensional (3D) detoxification device. This device is created by 3D printing of designer hydrogels with functional polydiacetylene nanoparticles installed in the hydrogel matrix. The nanoparticles can attract, capture and sense toxins, while the 3D matrix with a modified liver lobule microstructure allows toxins to be trapped efficiently. Our results show that the toxin solution completely loses its virulence after treatment using this biomimetic detoxification device. This work provides a proof-of-concept of detoxification by a 3D-printed biomimetic nanocomposite construct in hydrogel, and could lead to the development of alternative detoxification platforms.
Project description:The latest efforts in digital fluidic circuits' research aim at being electronics-free, light-weight, and compliant controllers for soft robots; however, challenges arise to adjust the fluidic circuit's digital logic operations. Currently there is no other way to modulate the amplitude or frequency but to structurally redesign the entire fluidic circuitry. This is mainly because there is currently no method to create an analog circuit-like behavior in the digital fluidic circuits using conventional digitized fluidic gates. In this work, a new approach is presented to designing a circuit with digitized fluidic gates that is comparable to an analog circuit capable of actively tuning the circuit's fluidic characteristics, such as pressure gain, amplitude of output, and time response. For the first time, a pressure-controlled oscillator is modeled, designed, and prototyped that not only controls the fluidic oscillation, but also modulates its frequency using only a single, quasi-static pressure input. It can also demonstrate the circuit's performance for the control of a soft robotic system by actively modulating the motion of a soft earthworm robot up to twice of crawling speeds. This work has distinct contributions to designing and building intelligent pneumatic controllers toward truly comprehensive soft robotic systems.
Project description:Polysaccharide hydrogels are widely used in tissue engineering because of their superior biocompatibility and low immunogenicity. However, many of these hydrogels are unrealistic for practical applications as the cost of raw materials is high, and the fabrication steps are tedious. This study focuses on the facile fabrication and optimization of agarose-polydopamine hydrogel (APG) scaffolds for skin wound healing. The first study objective was to evaluate the effects of polydopamine (PDA) on the mechanical properties, water holding capacity and cell adhesiveness of APG. We observed that APG showed decreased rigidity and increased water content with the addition of PDA. Most importantly, decreased rigidity translated into significant increase in cell adhesiveness. Next, the slow biodegradability and high biocompatibility of APG with the highest PDA content (APG3) was confirmed. In addition, APG3 promoted full-thickness skin defect healing by accelerating collagen deposition and promoting angiogenesis. Altogether, we have developed a straightforward and efficient strategy to construct functional APG scaffold for skin tissue engineering, which has translation potentials in clinical practice. Graphical abstract Image 1 Highlights • Agarose-polydopamine hydrogel scaffold was developed via a simple two-step approach.• In vitro and in vivo experiments show that the scaffold holds biocompatibility and biodegradability.• The cell migration rate on the scaffold is high and cells can migrate from the surface to the inside of scaffold.• The scaffold can facilitate wound healing by promoting collagen deposition and angiogenesis.
Project description:The impressive locomotion and manipulation capabilities of spiders have led to a host of bioinspired robotic designs aiming to reproduce their functionalities; however, current actuation mechanisms are deficient in either speed, force output, displacement, or efficiency. Here-using inspiration from the hydraulic mechanism used in spider legs-soft-actuated joints are developed that use electrostatic forces to locally pressurize a hydraulic fluid, and cause flexion of a segmented structure. The result is a lightweight, low-profile articulating mechanism capable of fast operation, high forces, and large displacement; these devices are termed spider-inspired electrohydraulic soft-actuated (SES) joints. SES joints with rotation angles up to 70°, blocked torques up to 70 mN m, and specific torques up to 21 N m kg-1 are demonstrated. SES joints demonstrate high speed operation, with measured roll-off frequencies up to 24 Hz and specific power as high as 230 W kg-1 -similar to human muscle. The versatility of these devices is illustrated by combining SES joints to create a bidirectional joint, an artificial limb with independently addressable joints, and a compliant gripper. The lightweight, low-profile design, and high performance of these devices, makes them well-suited toward the development of articulating robotic systems that can rapidly maneuver.
Project description:Autonomous and remotely operated underwater vehicles allow us to reach places which have previously been inaccessible and perform complex repair, exploration and analysis tasks. As their navigation is not infallible, they may cause severe damage to themselves and their often fragile surroundings, such as flooded caves, coral reefs, or even accompanying divers in case of a collision. In this study, we used a shallow neural network, consisting of interlinking PID controllers, and trained by a genetic algorithm, to control a biologically inspired AUV with a soft and compliant exoskeleton. Such a compliant structure is a versatile and passive solution which reduces the accelerations induced by collisions to 56% of the original mean value acting upon the system, thus, notably reducing the stress on its components and resulting reaction forces on its surroundings. The segmented structure of this spherical exoskeleton protects the encased system without limiting the use of cameras, sensors or manipulators.