Unknown

Dataset Information

0

Deficiency of ASGR1 in pigs recapitulates reduced risk factor for cardiovascular disease in humans.


ABSTRACT: Genetic variants in the asialoglycoprotein receptor 1 (ASGR1) are associated with a reduced risk of cardiovascular disease (CVD) in humans. However, the underlying molecular mechanism remains elusive. Given the cardiovascular similarities between pigs and humans, we generated ASGR1-deficient pigs using the CRISPR/Cas9 system. These pigs show age-dependent low levels of non-HDL-C under standard diet. When received an atherogenic diet for 6 months, ASGR1-deficient pigs show lower levels of non-HDL-C and less atherosclerotic lesions than that of controls. Furthermore, by analysis of hepatic transcriptome and in vivo cholesterol metabolism, we show that ASGR1 deficiency reduces hepatic de novo cholesterol synthesis by downregulating 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), and increases cholesterol clearance by upregulating the hepatic low-density lipoprotein receptor (LDLR), which together contribute to the low levels of non-HDL-C. Despite the cardioprotective effect, we unexpectedly observed mild to moderate hepatic injury in ASGR1-deficient pigs, which has not been documented in humans with ASGR1 variants. Thus, targeting ASGR1 might be an effective strategy to reduce hypercholesterolemia and atherosclerosis, whereas further clinical evidence is required to assess its hepatic impact.

SUBMITTER: Xie B 

PROVIDER: S-EPMC8584755 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deficiency of ASGR1 in pigs recapitulates reduced risk factor for cardiovascular disease in humans.

Xie Baocai B   Shi Xiaochen X   Li Yan Y   Xia Bo B   Zhou Jia J   Du Minjie M   Xing Xiangyang X   Bai Liang L   Liu Enqi E   Alvarez Fernando F   Jin Long L   Deng Shaoping S   Mitchell Grant A GA   Pan Dengke D   Li Mingzhou M   Wu Jiangwei J  

PLoS genetics 20211111 11


Genetic variants in the asialoglycoprotein receptor 1 (ASGR1) are associated with a reduced risk of cardiovascular disease (CVD) in humans. However, the underlying molecular mechanism remains elusive. Given the cardiovascular similarities between pigs and humans, we generated ASGR1-deficient pigs using the CRISPR/Cas9 system. These pigs show age-dependent low levels of non-HDL-C under standard diet. When received an atherogenic diet for 6 months, ASGR1-deficient pigs show lower levels of non-HDL  ...[more]

Similar Datasets

| S-EPMC2996661 | biostudies-literature
| S-EPMC7755719 | biostudies-literature
| S-EPMC8855064 | biostudies-literature
2020-10-31 | GSE145263 | GEO
| S-EPMC3159113 | biostudies-literature
| S-EPMC7809289 | biostudies-literature
| S-EPMC11269292 | biostudies-literature
| S-EPMC9805408 | biostudies-literature
| S-EPMC10716616 | biostudies-literature