AMBRA1 Negatively Regulates the Function of ALDH1B1, a Cancer Stem Cell Marker, by Controlling Its Ubiquitination.
Ontology highlight
ABSTRACT: Activating molecule in Beclin-1-regulated autophagy (AMBRA1), a negative regulator of tumorigenesis, is a substrate receptor of the ubiquitin conjugation system. ALDH1B1, an aldehyde dehydrogenase, is a cancer stem cell (CSC) marker that is required for carcinogenesis via upregulation of the β-catenin pathway. Although accumulating evidence suggests a role for ubiquitination in the regulation of CSC markers, the ubiquitination-mediated regulation of ALDH1B1 has not been unraveled. While proteome analysis has suggested that AMBRA1 and ALDH1B1 can interact, their interaction has not been validated. Here, we show that AMBRA1 is a negative regulator of ALDH1B1. The expression of ALDH1B1-regulated genes, including PTEN, CTNNB1 (β-catenin), and CSC-related β-catenin target genes, is inversely regulated by AMBRA1, suggesting a negative regulatory role of AMBRA1 in the expression of ALDH1B1-regulated genes. We found that the K27- and K33-linked ubiquitination of ALDH1B1 is mediated via the cooperation of AMBRA1 with other E3 ligases, such as TRAF6. Importantly, ubiquitination site mapping revealed that K506, K511, and K515 are important for the K27-linked ubiquitination of ALDH1B1, while K33-linked ubiquitination occurs at K506. A ubiquitination-defective mutant of ALDH1B1 increased the self-association ability of ALDH1B1, suggesting a negative correlation between the ubiquitination and self-association of ALDH1B1. Together, our findings indicate that ALDH1B1 is negatively regulated by AMBRA1-mediated noncanonical ubiquitination.
SUBMITTER: Baek SH
PROVIDER: S-EPMC8584921 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA