ABSTRACT: Group B Streptococcus (GBS) is a leading cause of invasive neonatal disease. Epidemiological surveillance of GBS is important to determine cumulative incidence, antimicrobial resistance rates, and maternal and neonatal disease prevention. In this study, we present an update on GBS epidemiology in Alberta, Canada, from 2014 to 2020. Over the 7-year period, 1,556 GBS isolates were submitted to the Alberta Public Health Laboratory for capsular polysaccharide (CPS) typing and antimicrobial susceptibility testing. We analyzed the distribution of CPS types in Alberta and found CPS types III (23.6%), Ia (16.0%), Ib (14.8%), II (13.3%), V (12.7%), IV (12.5%), and VI (2.38%) to be the most prevalent. Less than 1% each of CPS types VII, VIII, and IX were identified. In agreement with historical data, the presence of CPS type IV continued to rise across Alberta, particularly in cases of adult infection, where a 2-fold increase was observed. Cumulative incidences of GBS cases per 100,000 population and late-onset disease per 1,000 live births increased from 4.43 to 5.36 and 0.38 to 0.41, respectively, from 2014 to 2020. However, the incidence of early-onset disease decreased during the 7-year period from 0.2 to 0.07, suggestive of successful intrapartum chemoprophylaxis treatment programs. All GBS isolates were susceptible to penicillin and vancomycin. However, nonsusceptibility to erythromycin increased significantly, from 36.85% to 50.8%, from 2014 to 2020. Similarly, nonsusceptibility to clindamycin also increased significantly, from 21.0% to 45.8%. In comparison to historical data, the overall rates of GBS infection and antimicrobial resistance have increased and the predominant CPS types have changed. IMPORTANCE This work describes the epidemiology of invasive infections caused by the bacterium group B Streptococcus (GBS) in Alberta, Canada. We show that rates of invasive GBS disease have increased from 2014 to 2020 for both adult disease and late-onset disease in neonates, whereas the rate of early onset disease in neonates has decreased. We also show that the rate of resistance to erythromycin (an antibiotic used to treat GBS) has also increased in this time.