Project description:We utilized tissue microdissection and expression microarrays to measure ex vivo gene expression profiles in twelve cases of patient-matched normal basal epithelial cells, normal differentiated squamous epithelium, and cancer. The data set from the precisely-dissected, dividing basal cell layer was used as a ‘biological filter’ to identify genes that were specifically dysregulated in tumors, and not simply increased as a consequence of normal growth.
Project description:Esophageal squamous cell carcinoma (ESCC), the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB), normal differentiated squamous epithelium (ND), and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets.As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA) were verified to be dysregulated in the same pattern at both the mRNA and protein levels.These data reveal insight into genes and molecular pathways mediating ESCC development and provide information potentially useful in designing novel therapeutic interventions for this tumor type.
Project description:ESCC (Esophageal squamous cell carcinoma) is a heterogeneous cancer with diverse prognosis. Here, to explore the biological diversity of ESCC, we employed gene expression profiles from 360 ESCC tumors from East Asians to establish a comprehensive molecular classification and characterization of ESCC. Using the specific 185-gene signature generated by unsupervised consensus clustering of gene expression data, we defined four subtypes associated with distinct clinical metrics: tumors with high metastasis associated with EMT (epithelial to mesenchymal transition) and active MAP4K4/JNK signaling pathway; tumors with high chromosomal instability with up regulated MYC targes; well differentiated tumors with less aggressive and moderated tumors. The clinical relevance of these subtypes was stated by significant differences in prognosis. Importantly, 24% of all ESCCs (n = 360) were classified into the high metastasis subtype associated with poorly differentiation and unfavorable prognosis. We provided evidence that this subtype relates to tumor microenvironment. Collectively, these results might contribute to more precise personalized therapeutic strategies for each subtype of ESCC patients in the near future.
Project description:We utilized tissue microdissection and expression microarrays to measure ex vivo gene expression profiles in twelve cases of patient-matched normal basal epithelial cells, normal differentiated squamous epithelium, and cancer.
Project description:Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of esophageal cancer with inferior prognosis. Here, we conducted comprehensive transcriptomic, proteomic, phosphoproteomic, and metabolomic characterization of human, treatment-naive ESCC and paired normal adjacent tissues (cohort 1, n = 24) in an effort to identify new molecular vulnerabilities for ESCC and potential therapeutic targets. Integrative analysis revealed a small group of genes that were related to the active posttranscriptional and posttranslational regulation of ESCC. By using proteomic, phosphoproteomic, and metabolomic data, networks of ESCC-related signaling and metabolic pathways that were closely linked to cancer etiology were unraveled. Notably, integrative analysis of proteomic and phosphoproteomic data pinpointed that certain pathways involved in RNA transcription, processing, and metabolism were stimulated in ESCC. Importantly, proteins with close linkage to ESCC prognosis were identified. By enrolling an ESCC patient cohort 2 (n = 41), three top-ranked prognostic proteins X-prolyl aminopeptidase 3 (XPNPEP3), bromodomain PHD finger transcription factor (BPTF), and fibrillarin (FBL) were verified to have increased expression in ESCC. Among these prognostic proteins, only FBL, a well-known nucleolar methyltransferase, was essential for ESCC cell growth in vitro and in vivo. Furthermore, a validation study using an ESCC patient cohort 3 (n = 100) demonstrated that high FBL expression predicted unfavorable patient survival. Finally, common cancer/testis antigens and established cancer drivers and kinases, all of which could direct therapeutic decisions, were characterized. Collectively, our multi-omics analyses delineated new molecular features associated with ESCC pathobiology involving epigenetic, posttranscriptional, posttranslational, and metabolic characteristics, and unveiled new molecular vulnerabilities with therapeutic potential for ESCC.
Project description:ObjectiveOur previous study suggested cyclin-dependent kinase-like 3 (CDKL3) acts as a new oncogene in esophageal squamous cell carcinoma (ESCC) cell line TE-1. However, the molecular mechanisms and biological effects of CDKL3 in ESCC remain unknown. In the present study, we aimed to explore the clinical significance of CDKL3 in ESCC and how CDKL3 regulates the malignant behavior of ESCC.MethodsESCC samples were stained by immunohistochemical staining (IHC) and analyzed for the expression of CDKL3. The functions of CDKL3 on proliferation, apoptosis, migration, invasion, and colony formation were investigated by celigo assay, MTT assay, colony formation, caspase 3/7 activity analysis, transwell migration and invasion assay, respectively. A transplanted tumor model was established to study the functions of FLVCR1 on the tumorigenesis of ESCC cells. Microarray analysis was utilized to identify the CDKL3-regulated genes in ESCC cells.ResultsESCC tumor tissues possessed a significantly higher expression of CDKL3 and autophagy-related gene 5 (ATG5) than matched adjacent normal tissues. The high expressions of CDKL3 were positively associated with the tumor-node-metastasis (TNM) stage and Ki67. Upregulated ATG5 expression was positively correlated with male, advanced tumor (T) stage, and TNM stage. Kaplan-Meier analysis showed that ESCC patients with higher expression of CDKL3 or ATG5 had a shorter overall survival. The worst prognosis was recognized in patients with both high manifestations of CDKL3 and ATG5. Time-dependent receiver operating characteristic (ROC) curve was established to reveal that the combination of CDKL3, ATG5, and TNM stage-based model had better prognostic accuracy than TNM stage. Moreover, CDKL3 knockdown markedly repressed cell growth and aggressivity in vitro and in vivo. Mechanistically, ATG5 was confirmed as a downstream gene involved in the pro-oncogenic function of CDKL3.ConclusionCDKL3 can be utilized as an independent poor prognostic marker in ESCC patients. Furthermore, CDKL3 may promote tumor profession, invasion, metastasis, and prohibit tumor apoptosis partly by ATG5 activation.
Project description:Dysplasia and intramucosal esophageal squamous cell carcinoma (ESCC) frequently go unnoticed with white-light endoscopy and, therefore, progress to invasive tumors. If suitable targets are available, fluorescence molecular endoscopy might be promising to improve early detection. Microarray expression data of patient-derived normal esophagus (n = 120) and ESCC samples (n = 118) were analyzed by functional genomic mRNA (FGmRNA) profiling to predict target upregulation on protein levels. The predicted top 60 upregulated genes were prioritized based on literature and immunohistochemistry (IHC) validation to select the most promising targets for fluorescent imaging. By IHC, GLUT1 showed significantly higher expression in ESCC tissue (30 patients) compared to the normal esophagus adjacent to the tumor (27 patients) (p < 0.001). Ex vivo imaging of GLUT1 with the 2-DG 800CW tracer showed that the mean fluorescence intensity in ESCC (n = 17) and high-grade dysplasia (HGD, n = 13) is higher (p < 0.05) compared to that in low-grade dysplasia (LGD) (n = 7) and to the normal esophagus adjacent to the tumor (n = 5). The sensitivity and specificity of 2-DG 800CW to detect HGD and ESCC is 80% and 83%, respectively (ROC = 0.85). We identified and validated GLUT1 as a promising molecular imaging target and demonstrated that fluorescent imaging after topical application of 2-DG 800CW can differentiate HGD and ESCC from LGD and normal esophagus.
Project description:The tumor microenvironment is a highly complex ecosystem of diverse cell types, which shape cancer biology and impact the responsiveness to therapy. Here, we analyze the microenvironment of esophageal squamous cell carcinoma (ESCC) using single-cell transcriptome sequencing in 62,161 cells from blood, adjacent nonmalignant and matched tumor samples from 11 ESCC patients. We uncover heterogeneity in most cell types of the ESCC stroma, particularly in the fibroblast and immune cell compartments. We identify a tumor-specific subset of CST1+ myofibroblasts with prognostic values and potential biological significance. CST1+ myofibroblasts are also highly tumor-specific in other cancer types. Additionally, a subset of antigen-presenting fibroblasts is revealed and validated. Analyses of myeloid and T lymphoid lineages highlight the immunosuppressive nature of the ESCC microenvironment, and identify cancer-specific expression of immune checkpoint inhibitors. This work establishes a rich resource of stromal cell types of the ESCC microenvironment for further understanding of ESCC biology.
Project description:Esophageal squamous cell carcinoma have been frustrating to treat, with slow progress made on extending survival. Immunotherapy targeting immune checkpoints, T cells, and infiltrating lymphocytes has shown promise in early studies. The efficacy of pembrolizumab and nivolumab is encouraging. Anti-chemokine receptors and oncolytic viruses are also making headway against these stubborn tumors; improved results when immune checkpoint inhibitors are combined with radiation therapy are eagerly anticipated. Adoptive T cell therapy and vaccines are also under development. The importance of a multidisciplinary approach cannot be emphasized enough.
Project description:BACKGROUND: Human head and neck squamous cell carcinoma (HNSCC) is an aggressive and recurrent malignancy. Identification of unique or overexpressed cell-associated or cell surface antigens is critical for diagnosis and development of cancer vaccines and targeted therapies for HNSCC. We have used high throughput microarray technology to search for candidate targets in HNSCC. METHODS: Gene expression profiling in 17 HNSCC tumors and 3 normal tonsil tissues was performed by microarray. QRT-PCR analysis was performed to validate the microarray results. The five candidate genes were further characterized by immunohistochemical technique in surgical samples and tissue arrays. RESULTS: A total of 192 up-regulated genes at statistical significance of p < 0.01 and log2 ratio > or = 1 were identified in HNSCC tumors compared to normal tissues. These genes belong to immune response, cell growth, cell cycle regulation, oncogenes, metabolism and others. Five potential novel target genes (FABP5, CD24, CD44, CD74, and HSP27) were identified, which were highly expressed in HNSCC tumor samples and tissue arrays. CD24, CD44, and CD74 proteins were expressed on the cell surface, and FABP5 and HSP27 proteins were predominantly expressed in the cytoplasm of HNSCC. CONCLUSION: Five genes and their products may serve as a diagnostic biomarker or therapeutic target for HNSCC. While additional work is needed to elucidate the biological significance of these proteins, CD24 and CD74 expressed only in small proportion of cells indicating tumor heterogeneity and subtypes of tumor initiating cells (CD24+/CD44+) present in HNSCC.