Project description:Bats may be natural reservoirs for a large variety of emerging viruses, including mammalian coronaviruses (CoV). The recent emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) in humans, with evidence that these viruses may have their ancestry in bats, highlights the importance of virus surveillance in bat populations. Here, we report the identification and molecular characterization of a bat β-Coronavirus, detected during a viral survey carried out on different bat species in the island of Sardinia (Italy). Cutaneous, oral swabs, and faecal samples were collected from 46 bats, belonging to 15 different species, and tested for viral presence. Coronavirus RNA was detected in faecal samples from three different species: the greater horseshoe bat (Rhinolophus ferrumequinum), the brown long-eared bat (Plecotus auritus), and the European free-tailed bat (Tadarida teniotis). Phylogenetic analyses based on RNA-dependent RNA polymerase (RdRp) sequences assigned the detected CoV to clade 2b within betacoronaviruses, clustering with SARS-like bat CoVs previously reported. These findings point to the need for continued surveillance of bat CoV circulating in Sardinian bats, and extend the current knowledge on CoV ecology with novel sequences detected in bat species not previously described as β-Coronavirus hosts.
Project description:Canine parvovirus type 2 (CPV-2) is responsible of acute hemorrhagic gastroenteritis in young dogs. CPV-2 emerged in 1978 in the USA, but new antigenic types, CPV-2a, 2b and 2c, have completely replaced the original type. In this study, we analyzed 81 animals collected in Sardinia, Italy. The VP2 sequence analysis of 27 positive samples showed that all antigenic CPV-2 types are circulating. CPV-2b seems to be the most widespread variant, followed by CPV-2a. Furthermore, 12 CPV-2b strains displayed further amino acid substitutions and formed a separate cluster in a phylogenetic tree, indicating regional genetic variation.
Project description:We report group B Betacoronavirus infection in little Japanese horseshoe bats in Iwate prefecture. We then used reverse-transcription PCR to look for the coronavirus RNA-dependent RNA polymerase gene in fecal samples collected from 27 little Japanese horseshoe bats and found eight were provisionally positive. We had a success in the nucleotide sequencing of six of the eight positive samples and compared them with those of authentic coronaviruses. We found that these six samples were positive in coronavirus infection, and they belonged to the group B Betacornavirus by phylogenetic analysis. Virus isolation using the Vero cell culture was unsuccessful. Pathogenic trait of these bat coronaviruses remained unexplored.
Project description:The first examination of classical Kaposi's sarcoma incidence in southern Sardinia (Italy) in 1998-2002 found the highest rate recorded in the island of 2.49 per 100 000 per year (standardised).
Project description:African swine fever (ASF) is a devastating infectious disease of domestic pigs and wild boar that is spreading quickly around the world and causing huge economic losses. Although the development of effective vaccines is currently being attempted by several labs, the absence of globally recognized licensed vaccines makes disease prevention and early detection even more crucial. ASF has spread across many countries in Europe and about two years ago affected the Italian susceptible population. In Italy, the first case of ASF genotype II in wild boar dates back to January 2022, while the first outbreak in a domestic pig farm was notified in August 2023. Currently, four clusters of infection are still ongoing in northern (Piedmont-Liguria and Lombardy), central (Lazio), and southern Italy (Calabria and Campania). In early September 2023, the first case of ASFV genotype II was detected in a domestic pig farm in Sardinia, historically affected by genotype I and in the final stage of eradication. Genomic characterization of p72, p54, and I73R/I329L genome regions revealed 100% similarity to those obtained from isolates that have been circulating in mainland Italy since January 2022 and also with international strains. The outbreak was detected and confirmed due to the passive surveillance plan on domestic pig farms put in place to provide evidence on genotype I's absence. Epidemiological investigations suggest 24 August as the most probable time of ASFV genotype II's arrival in Sardinia, likely due to human activities.
Project description:BackgroundGastrointestinal nematodes (GIN) are ubiquitous in small ruminant farming, representing a major health and production concern. Given their differences in pathogenicity and the current problems regarding anthelmintic resistance, specific diagnosis of GIN is of significant importance. At present, the most widely applied method for this entails culture and microscopic analysis of third-stage larvae, allowing for identification at least to the genus level. Overall, a variety of keys for microscopic analysis have been published, showing substantial variation. Given this fact, this study aimed to produce a practical and updated guide for the identification of infective ovine GIN larvae.MethodsUsing existing keys and protocols, a total of 173larvae of the most common species/genera of ovine GIN from pooled faecal samples from Sardinia (Italy) were identified and extracted, and further individual molecular identification was performed. Morphometric and morphological data as well as high-quality photographs were collected and combined to produce the final guide.ResultsGIN microscopically and molecularly identified during this research include Trichostrongylus spp., Teladorsagia circumcincta, Haemonchus contortus, Cooperia curticei, and Chabertia ovina. Based on microscopic analysis, 73.5% of the larvae were correctly identified. Based on sheathed tail length, 91.8% were correctly classified into their respective preliminary groups.ConclusionsIt is crucial for the microscopic identification of infectious GIN larvae to examine each larva in its entirety and thus to take multiple characteristics into account to obtain an accurate diagnosis. However, a preliminary classification based on sheathed tail length (resulting in three groups: A, short; B, medium; C, long) was found to be effective. Further identification within group A can be achieved based on the presence of a cranial inflexion, caudal tubercles and full body measurements (Trichostrongylus spp. < 720 µm, T. circumcincta ≥ 720 µm). Larvae within group B can be differentiated based on sheathed tail morphometry (H. contortus > 65 µm, C. curticei ≤ 65 µm), the presence of cranial refractile bodies, total body length measurements (H. contortus ≤ 790 µm, C. curticei > 790 µm) and shape of the cranial extremity. Finally, all characteristics proposed for the differentiation between Oesophagostomum spp. and C. ovina larvae (group C) were found to have considerable restrictions.
Project description:Canine kobuviruses (CaKoVs) were first identified in diarrhoeic and asymptomatic dogs in 2011 in the USA. Subsequent studies have demonstrated a worldwide distribution of these viruses, but it is not clear if CaKoVs play a role as enteric pathogens of dogs. More recently, CaKoV RNA has been detected in wild carnivores, including red fox, golden jackal, side-striped jackal and spotted hyena. In this study, we addressed the hypothesis that wolves are susceptible to CaKoV infections. A total of 185 wolf stool samples were collected from necropsied animals and from transects in the Liguria, Piemonte and Valle D'Aosta regions of Italy, and CaKoV RNA was identified in two of these specimens. Both samples were obtained from necropsied wolves, with a prevalence rate of 4.9% (2/41). Sequence analysis of the full-length VP1 region showed that these strains displayed the highest nucleotide (nt) sequence identity (86.3-98.5%) to canine strains identified in the UK and Africa, and to kobuviruses that were previously detected in other African wild carnivores. This suggests that genetically related CaKoV strains circulate in domestic and wild carnivores, with interspecies transmission being not uncommon among carnivores of different ecosystems.
Project description:Bats are natural reservoirs for many mammalian coronaviruses, which have received renewed interest after the discovery of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) CoV in humans. This study describes the identification and molecular characterization of alphacoronaviruses and betacoronaviruses in bats in Italy, from 2010 to 2012. Sixty-nine faecal samples and 126 carcasses were tested using pan-coronavirus RT-PCR. Coronavirus RNAs were detected in seven faecal samples and nine carcasses. A phylogenetic analysis of RNA-dependent RNA polymerase sequence fragments aided in identifying two alphacoronaviruses from Kuhl's pipistrelle (Pipistrellus kuhlii), three clade 2b betacoronaviruses from lesser horseshoe bats (Rhinolophus hipposideros), and 10 clade 2c betacoronaviruses from Kuhl's pipistrelle, common noctule (Nyctalus noctula), and Savi's pipistrelle (Hypsugo savii). This study fills a substantive gap in the knowledge on bat-CoV ecology in Italy, and extends the current knowledge on clade 2c betacoronaviruses with new sequences obtained from bats that have not been previously described as hosts of these viruses.