Project description:The field of polymer membrane design is primarily based on empirical observation, which limits discovery of new materials optimized for separating a given gas pair. Instead of relying on exhaustive experimental investigations, we trained a machine learning (ML) algorithm, using a topological, path-based hash of the polymer repeating unit. We used a limited set of experimental gas permeability data for six different gases in ~700 polymeric constructs that have been measured to date to predict the gas-separation behavior of over 11,000 homopolymers not previously tested for these properties. To test the algorithm's accuracy, we synthesized two of the most promising polymer membranes predicted by this approach and found that they exceeded the upper bound for CO2/CH4 separation performance. This ML technique, which is trained using a relatively small body of experimental data (and no simulation data), evidently represents an innovative means of exploring the vast phase space available for polymer membrane design.
Project description:The process of liquid-liquid crystalline phase separation (LLCPS) in filamentous colloids is at the very core of multiple biological, physical and technological processes of broad significance. However, the complete theoretical understanding of the process is still missing. LLCPS involves the nucleation, growth and up-concentration of anisotropic droplets from a continuous isotropic phase, until a state of equilibrium is reached. Herein, by combining the thermodynamic extremum principle with the Onsager theory, we describe the nucleation and growth of liquid crystalline droplets, and the evolution of their size and concentration during phase separation, eventually leading to a multitude of order-order phase transitions. Furthermore, a decreasing pitch behaviour can be predicted using this combined theory during tactoid growth, already observed experimentally but not yet explained by present theories. The results of this study are compared with the experimental data of cholesteric pitch, observed in three different systems of biological chiral liquid crystals. These findings give an important framework for predicting the formation, growth and phase behaviour of biological filamentous colloids undergoing LLCPS, advancing our understanding of liquid-liquid phase separation and self-assembly mechanisms in biological systems, and provide a valuable rationale for developing nanomaterials and applications in nanotechnology.
Project description:This paper discusses the potential of polymer networks, templated by crystalline metal-organic framework (MOF), as novel selective layer material in thin film composite membranes. The ability to create mechanically stable membranes with an ultra-thin selective layer of advanced polymer materials is highly desirable in membrane technology. Here, we describe a novel polymeric membrane, which is synthesized via the conversion of a surface anchored metal-organic framework (SURMOF) into a surface anchored gel (SURGEL). The SURGEL membranes combine the high variability in the building blocks and the possibility to control the network topology and membrane thickness of the SURMOF synthesis with high mechanical and chemical stability of polymers. Next to the material design, the transfer of membranes to suitable supports is also usually a challenging task, due to the fragile nature of the ultra-thin films. To overcome this issue, we utilized a porous support on top of the membrane, which is mechanically stable enough to allow for the easy membrane transfer from the synthesis substrate to the final membrane support. To demonstrate the potential for gas separation of the synthesized SURGEL membranes, as well as the suitability of the transfer method, we determined the permeance for eight gases with different kinetic diameters.
Project description:Bottom-up methods for the fabrication of nanoporous polymer membranes have numerous advantages. However, it remains challenging to fabricate nanoporous membranes that are mechanically robust and have aligned pores, that is, with a low tortuosity. Here, a mechanically robust thin-film composite membrane was fabricated consisting of a two-dimensional (2D) porous smectic liquid crystalline polymer network inside an anisotropic, microporous polymer scaffold. The polymer scaffold allows for relatively straightforward planar alignment of the smectic liquid crystalline mixture, which consisted of a diacrylate cross-linker and a dimer forming benzoic acid-based monoacrylate. Polymerized samples displayed a smectic A (SmA) phase, which formed the eventual 2D porous channels after base treatment. The aligned 2D nanoporous membranes showed a high rejection of anionic solutes bigger than 322 g/mol. Cleaning and reusability of the system were demonstrated by intentionally fouling the porous channels with a cationic dye and subsequently cleaning the membrane with an acidic solution. After cleaning, the membrane properties were unaffected; this, combined with numerous pressurizing cycles, demonstrated reusability of the system.
Project description:Polynorbornenes are already used in a wide range of applications. They are also considered materials for polymer gas separation membranes because of their favorable thermal and chemical resistance, rigid backbone and varied chemistry. In this study, the use of 5-vinyl-2-norbornene (VNB), a new monomer in the field of gas separations, is investigated by synthesizing two series of polymers via a vinyl-addition polymerization. The first series investigates the influence of the VNB content on gas separation in a series of homo and copolymers with norbornene. The second series explores the influence of the crosslinking of polyvinylnorbornene (pVNB) on gas separation. The results indicate that while crosslinking had little effect, the gas separation performance could be fine-tuned by controlling the VNB content. As such, this work demonstrates an interesting way to significantly extend the fine-tuning possibilities of polynorbornenes for gas separations.
Project description:Global warming by greenhouse gas emissions is one of the main threats of our modern society, and efficient CO2 capture processes are needed to solve this problem. Membrane separation processes have been identified among the most promising technologies for CO2 capture, and these require the development of highly efficient membrane materials which, in turn, requires detailed understanding of their operation mechanism. In the last decades, molecular modeling studies have become an extremely powerful tool to understand and anticipate the gas transport properties of polymeric membranes. This work presents a study on the correlation of the structural features of different membrane materials, analyzed by means of molecular dynamics simulation, and their gas diffusivity/selectivity. We propose a simplified method to determine the void size distribution via an automatic image recognition tool, along with a consolidated Connolly probe sensing of space, without the need of demanding computational procedures. Based on a picture of the void shape and width, automatic image recognition tests the dimensions of the void elements, reducing them to ellipses. Comparison of the minor axis of the obtained ellipses with the diameters of the gases yields a qualitative estimation of non-accessible paths in the geometrical arrangement of polymeric chains. A second tool, the Connolly probe sensing of space, gives more details on the complexity of voids. The combination of the two proposed tools can be used for a qualitative and rapid screening of material models and for an estimation of the trend in their diffusivity selectivity. The main differences in the structural features of three different classes of polymers are investigated in this work (glassy polymers, superglassy perfluoropolymers and high free volume polymers of intrinsic microporosity), and the results show how the proposed computationally less demanding analysis can be linked with their selectivities.
Project description:Membrane-based separation of combined acid gases carbon dioxide and hydrogen sulfide from natural gas streams has attracted increasing academic and commercial interest. These feeds are referred to as "sour," and herein, we report an ultra H2S-selective and exceptionally permeable glassy amidoxime-functionalized polymer of intrinsic microporosity for membrane-based separation. A ternary feed mixture (with 20% H2S:20% CO2:60% CH4) was used to demonstrate that a glassy amidoxime-functionalized membrane provides unprecedented separation performance under challenging feed pressures up to 77 bar. These membranes show extraordinary H2S/CH4 selectivity up to 75 with ultrahigh H2S permeability >4000 Barrers, two to three orders of magnitude higher than commercially available glassy polymeric membranes. We demonstrate that the postsynthesis functionalization of hyper-rigid polymers with appropriate functional polar groups provides a unique design strategy for achieving ultraselective and highly permeable membrane materials for practical natural gas sweetening and additional challenging gas pair separations.
Project description:Liquid crystalline droplets, also known as tactoids, forming by nucleation and growth within the phase diagram region where isotropic and nematic phases coexist, challenge our understanding of liquid crystals under confinement due to anisotropic surface boundaries at vanishingly small interfacial tension, resulting in complex, non-spherical shapes. Little is known about their dynamical properties, since they are mostly studied under quiescent, quasi-equilibrium conditions. Here we show that different classes of amyloid based nematic and cholesteric tactoids undergo order-order transitions by flow-induced deformations of their shape. Tactoids align under extensional flow, undergoing extreme deformation into highly elongated prolate shapes, with the cholesteric pitch decreasing as an inverse power-law of the tactoids aspect ratio. Free energy functional theory and experimental measurements are combined to rationalize the critical elongation above which the director-field configuration of tactoids transforms from bipolar and uniaxial cholesteric to homogenous and to debate on the thermodynamic nature of these transitions.
Project description:High-performance membranes exceeding the conventional permeability-selectivity upper bound are attractive for advanced gas separations. In the context microporous polymers have gained increasing attention owing to their exceptional permeability, which, however, demonstrate a moderate selectivity unfavorable for separating similarly sized gas mixtures. Here we report an approach to designing polymeric molecular sieve membranes via multi-covalent-crosslinking of blended bromomethyl polymer of intrinsic microporosity and Tröger's base, enabling simultaneously high permeability and selectivity. Ultra-selective gas separation is achieved via adjusting reaction temperature, reaction time and the oxygen concentration with occurrences of polymer chain scission, rearrangement and thermal oxidative crosslinking reaction. Upon a thermal treatment at 300 °C for 5 h, membranes exhibit an O2/N2, CO2/CH4 and H2/CH4 selectivity as high as 11.1, 154.5 and 813.6, respectively, transcending the state-of-art upper bounds. The design strategy represents a generalizable approach to creating molecular-sieving polymer membranes with enormous potentials for high-performance separation processes.
Project description:Thin-film composite mixed-matrix membranes (TFC-MMMs) have potential applications in practical gas separation processes because of their high permeance (gas flux) and gas selectivity. In this study, we fabricated a high-performance TFC-MMM based on a rubbery comb copolymer, i.e., poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate)-co-poly(oxyethylene methacrylate) (PBE), and metal-organic framework MOF-808 nanoparticles. The rubbery copolymer penetrates through the pores of MOF-808, thereby tuning the pore size. In addition, the rubbery copolymer forms a defect-free interfacial morphology with polymer-infiltrated MOF-808 nanoparticles. Consequently, TFC-MMMs (thickness = 350 nm) can be successfully prepared even with a high loading of MOF-808. As polymer-infiltrated MOF is incorporated into the polymer matrix, the PBE/MOF-808 membrane exhibits a significantly higher CO2 permeance (1069 GPU) and CO2/N2 selectivity (52.7) than that of the pristine PBE membrane (CO2 permeance = 431 GPU and CO2/N2 selectivity = 36.2). Therefore, the approach considered in this study is suitable for fabricating high-performance thin-film composite membranes via polymer infiltration into MOF pores.