Project description:Copper hydrides are important hydrogenation catalysts, but their poor stability hinders the practical applications. Ligand engineering is an effective strategy to tackle this issue. An amidinate ligand, N,N'-Di(5-trifluoromethyl-2-pyridyl)formamidinate (Tf-dpf) with four N-donors has been applied as a protecting agent in the synthesis of stable copper hydride clusters: Cu11H3(Tf-dpf)6(OAc)2 (Cu11) with three interfacial μ5-H and [Cu12H3(Tf-dpf)6(OAc)2]·OAc (Cu12) with three interstitial μ6-H. A solvent-triggered reversible interconversion between Cu11 and Cu12 has been observed thanks to the flexibility of Tf-dpf. Cu11 shows high activity in the reduction of 4-nitrophenol to 4-aminophenol, while Cu12 displays very low activity. Deuteration experiments prove that the type of hydride is the key in dictating the catalytic activity, for the interfacial μ5-H species in Cu11 are involved in the catalytic cycle whereas the interstitial μ6-H species in Cu12 are not. This work highlights the role of hydrides with regard to catalytic hydrogenation activity.
Project description:Catalytic reduction of a representative set of imines, both aldimines and ketimines, to amines has been studied using transfer hydrogenation from 1,4-dicyclohexadiene. Unusually, this has been achieved using s-block pre-catalysts, namely 1-metallo-2-tert-butyl-1,2-dihydropyridines, 2-tBuC5 H5 NM, M(tBuDHP), where M=Li-Cs. Reactions have been monitored in C6 D6 and tetrahydrofuran-d8 (THF-d8 ). A definite trend is observed in catalyst efficiency with the heavier alkali metal tBuDHPs outperforming the lighter congeners. In general, Cs(tBuDHP) is the optimal pre-catalyst with, in the best cases, reactions producing quantitative yields of amines in minutes at room temperature using 5 mol % catalyst. Supporting the experimental study, Density Functional Theory (DFT) calculations have also been carried out which reveal that Cs has a pathway with a significantly lower rate determining step than the Li congener. In the postulated initiation pathways DHP can act as either a base or as a surrogate hydride.
Project description:Size effect plays a crucial role in catalytic hydrogenation. The highly dispersed ultrasmall clusters with a limited number of metal atoms are one candidate of the next generation catalysts that bridge the single-atom metal catalysts and metal nanoparticles. However, for the unfavorable electronic property and their interaction with the substrates, they usually exhibit sluggish activity. Taking advantage of the small size, their catalytic property would be mediated by surface binding species. The combination of metal cluster coordination chemistry brings new opportunity. CO poisoning is notorious for Pt group metal catalysts as the strong adsorption of CO would block the active centers. In this work, we will demonstrate that CO could serve as a promoter for the catalytic hydrogenation when ultrasmall Pd clusters are employed. By means of DFT calculations, we show that Pd n (n = 2-147) clusters display sluggish activity for hydrogenation due to the too strong binding of hydrogen atom and reaction intermediates thereon, whereas introducing CO would reduce the binding energies of vicinal sites, thus enhancing the hydrogenation reaction. Experimentally, supported Pd2CO catalysts are fabricated by depositing preestablished [Pd2(μ-CO)2Cl4]2- clusters on oxides and demonstrated as an outstanding catalyst for the hydrogenation of styrene. The promoting effect of CO is further verified experimentally by removing and reintroducing a proper amount of CO on the Pd cluster catalysts.
Project description:The bis(arylimidazol-2-ylidene)pyridine cobalt methyl complex, ((iPr)CNC)CoCH3, was evaluated for the catalytic hydrogenation of alkenes. At 22 °C and 4 atm of H2 pressure, ((iPr)CNC)CoCH3 is an effective precatalyst for the hydrogenation of sterically hindered, unactivated alkenes such as trans-methylstilbene, 1-methyl-1-cyclohexene, and 2,3-dimethyl-2-butene, representing one of the most active cobalt hydrogenation catalysts reported to date. Preparation of the cobalt hydride complex, ((iPr)CNC)CoH, was accomplished by hydrogenation of ((iPr)CNC)CoCH3. Over the course of 3 h at 22 °C, migration of the metal hydride to the 4-position of the pyridine ring yielded (4-H2-(iPr)CNC)CoN2. Similar alkyl migration was observed upon treatment of ((iPr)CNC)CoH with 1,1-diphenylethylene. This reactivity raised the question as to whether this class of chelate is redox-active, engaging in radical chemistry with the cobalt center. A combination of structural, spectroscopic, and computational studies was conducted and provided definitive evidence for bis(arylimidazol-2-ylidene)pyridine radicals in reduced cobalt chemistry. Spin density calculations established that the radicals were localized on the pyridine ring, accounting for the observed reactivity, and suggest that a wide family of pyridine-based pincers may also be redox-active.
Project description:We report the synthesis of a terpyridine-based metal-organic layer (TPY-MOL) and its metalation with CoCl2 and FeBr2 to afford CoCl2·TPY-MOL and FeBr2·TPY-MOL, respectively. Upon activation with NaEt3BH, CoCl2·TPY-MOL catalyzed benzylic C-H borylation of methylarenes whereas FeBr2·TPY-MOL catalyzed intramolecular Csp3 -H amination of alkyl azides to afford pyrrolidines and piperidines. X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy, UV-Vis-NIR spectroscopy, and electron paramagnetic spectroscopy (EPR) measurements as well as density functional theory (DFT) calculations identified M(THF)2·TPY-MOL (M = Co or Fe) as the active catalyst with a MII-(TPY??)2- electronic structure featuring divalent metals and TPY diradical dianions. We believe that site isolation stabilizes novel MII-(TPY??)2- (M = Co or Fe) species in the MOLs to endow them with unique and enhanced catalytic activities for Csp3 -H borylation and intramolecular amination over their homogeneous counterparts. The MOL catalysts are also superior to their metal-organic framework analogs owing to the removal of diffusion barriers. Our work highlights the potential of MOLs as a novel 2D molecular material platform for designing single-site solid catalysts without diffusional constraints.
Project description:Ultrafine MgH₂ nanocrystalline powders were prepared by reactive ball milling of elemental Mg powders after 200 h of high-energy ball milling under a hydrogen gas pressure of 50 bar. The as-prepared metal hydride powders were contaminated with 2.2 wt. % of FeCr-stainless steel that was introduced to the powders upon using stainless steel milling tools made of the same alloy. The as-synthesized MgH₂ was doped with previously prepared TiC nanopowders, which were contaminated with 2.4 wt. % FeCr (materials of the milling media), and then ball milled under hydrogen gas atmosphere for 50 h. The results related to the morphological examinations of the fabricated nanocomposite powders beyond the micro-and nano-levels showed excellent distributions of 5.2 wt. % TiC/4.6 wt. % FeCr dispersoids embedded into the fine host matrix of MgH₂ powders. The as-fabricated nanocomposite MgH₂/5.2 wt. % TiC/4.6 wt. % FeCr powders possessed superior hydrogenation/dehydrogenation characteristics, suggested by the low value of the activation energy (97.74 kJ/mol), and the short time required for achieving a complete absorption (6.6 min) and desorption (8.4 min) of 5.51 wt. % H₂ at a moderate temperature of 275 °C under a hydrogen gas pressure ranging from 100 mbar to 8 bar. van't Hoff approach was used to calculate the enthalpy (DH) and entropy (DS) of hydrogenation for MgH₂, which was found to be -72.74 kJ/mol and 112.79 J/mol H₂/K, respectively. Moreover, van't Hoff method was employed to calculate the DH and DS of dehydrogenation, which was found to be 76.76 kJ/mol and 119.15 J/mol H₂/K, respectively. This new nanocomposite system possessed excellent absorption/desorption cyclability of 696 complete cycles, achieved in a cyclic-life-time of 682 h.
Project description:The stoichiometric reduction of N-carbophenoxypyridinium tetraphenylborate (6) by CpRu(P-P)H (Cp = eta(5)-cyclopentadienyl; P-P = dppe, 1,2-bis(diphenylphosphino)ethane, or dppf, 1,1'-bis(diphenylphosphino)ferrocene), and Cp*Ru(P-P)H (Cp* = eta(5)-pentamethylcyclopentadienyl; P-P = dppe) gives mixtures of 1,2- and 1,4-dihydropyridines. The stoichiometric reduction of 6 by Cp*Ru(dppf)H (5) gives only the 1,4-dihydropyridine, and 5 catalyzes the exclusive formation of the 1,4-dihydropyridine from 6, H(2), and 2,2,6,6-tetramethylpiperidine. In the stoichiometric reductions, the ratio of 1,4 to 1,2 product increases as the Ru hydrides become better one-electron reductants, suggesting that the 1,4 product arises from a two-step (e(-)/H(*)) hydride transfer. Calculations at the UB3LYP/6-311++G(3df,3pd)//UB3LYP/6-31G* level support this hypothesis, indicating that the spin density in the N-carbophenoxypyridinium radical (13) resides primarily at C4, while the positive charge in 6 resides primarily at C2 and C6. The isomeric dihydropyridines thus result from the operation of different mechanisms: the 1,2 product from a single-step H(-) transfer and the 1,4 product from a two-step (e(-)/H(*)) transfer.
Project description:A series of PNP zinc pincer complexes capable of bond activation via aromatization/dearomatization metal-ligand cooperation (MLC) were prepared and characterized. Reversible heterolytic N-H and H-H bond activation by MLC is shown, in which hemilability of the phosphorus linkers plays a key role. Utilizing this zinc pincer system, base-free catalytic hydrogenation of imines and ketones is demonstrated. A detailed mechanistic study supported by computation implicates the key role of MLC in facilitating effective catalysis. This approach offers a new strategy for (de)hydrogenation and other catalytic transformations mediated by zinc and other main group metals.
Project description:Hydrogen as a fuel can be stored safely with high volumetric density in metals. It can, however, also be detrimental to metals, causing embrittlement. Understanding fundamental behavior of hydrogen at the atomic scale is key to improve the properties of metal-metal hydride systems. However, currently, there is no robust technique capable of visualizing hydrogen atoms. Here, we demonstrate that hydrogen atoms can be imaged unprecedentedly with integrated differential phase contrast, a recently developed technique performed in a scanning transmission electron microscope. Images of the titanium-titanium monohydride interface reveal stability of the hydride phase, originating from the interplay between compressive stress and interfacial coherence. We also uncovered, 30 years after three models were proposed, which one describes the position of hydrogen atoms with respect to the interface. Our work enables previously unidentified research on hydrides and is extendable to all materials containing light and heavy elements, including oxides, nitrides, carbides, and borides.
Project description:NdGa hydride and deuteride phases were prepared from high-quality NdGa samples and their structures characterized by powder and single-crystal X-ray diffraction and neutron powder diffraction. NdGa with the orthorhombic CrB-type structure absorbs hydrogen at hydrogen pressures ≤ 1 bar until reaching the composition NdGaH(D)1.1, which maintains a CrB-type structure. At elevated hydrogen pressure additional hydrogen is absorbed and the maximum composition recovered under standard temperature and pressure conditions is NdGaH(D)1.6 with the Cmcm LaGaH1.66-type structure. This structure is a threefold superstructure with respect to the CrB-type structure. The hydrogen atoms are ordered and distributed on three fully occupied Wyckoff positions corresponding to tetrahedral (4c, 8g) and trigonal-bipyramidal (8g) voids in the parent structure. The threefold superstructure is maintained in the H-deficient phases NaGaH(D)x until 1.6 ≥ x ≥ 1.2. At lower H concentrations, coinciding with the composition of the hydride obtained from hydrogenation at atmospheric pressure, the unit cell of the CrB-type structure is resumed. This phase can also display H deficiency, NdGaH(D)y (1.1 ≥ y ≥ 0.9), with H(D) exclusively situated in partially empty tetrahedral voids. The phase boundary between the threefold superstructure (LaGaH1.66 type) and the onefold structure (NdGaH1.1 type) is estimated on the basis of phase-composition isotherms and neutron powder diffraction to be x = 1.15.