Project description:Mutations in the COL4A5 gene, located at Xq22, cause Alport syndrome (AS), a nephritis characterized by progressive deterioration of the glomerular basement membrane and usually associated with progressive hearing loss. We have identified a novel mutation, L1649R, present in 9 of 121 independently ascertained families. Affected males shared the same haplotype of eight polymorphic markers tightly linked to COL4A5, indicating common ancestry. Genealogical studies place the birth of this ancestor >200 years ago. The L1649R mutation is a relatively common cause of Alport syndrome in the western United States, in part because of the rapid growth and migratory expansion of mid-nineteenth-century pioneer populations carrying the gene. L1649R affects a highly conserved residue in the NC1 domain, which is involved in key inter- and intramolecular interactions, but results in a relatively mild disease phenotype. Renal failure in an L1649R male typically occurs in the 4th or 5th decade and precedes the onset of significant hearing loss by approximately 10 years.
Project description:BackgroundWolfram syndrome (WFS) is a rare autosomal recessive disease with clinical manifestations of diabetes mellitus (DM), diabetes insipidus (DI), optic nerve atrophy (OA) and sensorineural hearing loss (SNHL). Although SNHL is a key symptom of WFS, there is limited information on its natural history using standardized measures. Such information is important for clinical care and determining its use as an outcome measure in clinical trials.MethodsStandardized audiologic measures, including pure-tone testing, tympanometry, speech perception, and the unaided Speech Intelligibility Index (SII) were assessed in patients with confirmed WFS annually. Mixed model analyses were used to examine main effects of age, time or interactions for pure tone average (PTA), high frequency average (HFA) and SII.ResultsForty WFS patients were evaluated between 1 and 6 times. Mean age at initial enrollment was 13.5 years (SD = 5.6). Patients were classified as having normal hearing (n = 10), mild-to-severe (n = 24) or profound SNHL (n = 6). Mean age of diagnosis for SNHL was 8.3 years (SD = 5.1) with 75% prevalence. HFA worsened over time for both ears, and SII worsened over time in the worse ear, with greater decline in both measures in younger patients. Average estimated change over 1 year for all measures was in the subclinical range and power analyses suggest that 100 patients would be needed per group (treatment vs. placebo) to detect a 60% reduction in annual change of HFA over 3 years. If trials focused on just those patients with SNHL, power estimates suggest 55 patients per group would be sufficient.ConclusionsMost patients had a slow progressive SNHL emerging in late childhood. Change over time with standard audiologic tests (HFA, SII) was small and would not be detectable for at least 2 years in an individual. Relatively large sample sizes would be necessary to detect significant impact on hearing progression in a clinical trial. Hearing function should be monitored clinically in WFS to provide appropriate intervention. Because SNHL can occur very early in WFS, audiologists and otolaryngologists should be aware of and refer for later emerging symptoms.
Project description:Digenic Alport syndrome refers to the inheritance of pathogenic variants in COL4A5 plus COL4A3 or COL4A4 or in COL4A3 plus COL4A4 Where digenic Alport syndrome includes a pathogenic COL4A5 variant, the consequences depend on the sex of the affected individual, COL4A5 variant "severity," and the nature of the COL4A3 or COL4A4 change. A man with a pathogenic COL4A5 variant has all his collagen IV α3α4α5-heterotrimers affected, and an additional COL4A3 or COL4A4 variant may not worsen disease. A woman with a pathogenic COL4A5 variant has on average 50% of her heterotrimers affected, which is increased to 75% with a further COL4A3 or COL4A4 variant and associated with a higher risk of proteinuria. In digenic Alport syndrome with pathogenic COL4A3 and COL4A4 variants, 75% of the heterotrimers are affected. The COL4A3 and COL4A4 genes occur head-to-head on chromosome 2, and inheritance is autosomal dominant when both variants affect the same chromosome (in cis) or recessive when they affect different chromosomes (in trans). This form of digenic disease results in increased proteinuria and a median age of kidney failure intermediate between autosomal dominant and autosomal recessive Alport syndrome. Previous guidelines have suggested that all pathogenic or likely pathogenic digenic variants should be identified and reported. Affected family members should be identified, treated, and discouraged from kidney donation. Inheritance within a family is easier to predict if the two variants are considered independently and if COL4A3 and COL4A4 variants are known to be inherited on the same or different chromosomes.
Project description:The genetic causes of premature ovarian failure (POF) are highly heterogeneous, and causative mutations have been identified in more than ten genes so far. In two families affected by POF accompanied by hearing loss (together, these symptoms compose Perrault syndrome), exome sequencing revealed mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase: homozygous c.1565C>A (p.Thr522Asn) in a consanguineous Palestinian family and compound heterozygous c.1077delT and c.1886C>T (p.Thr629Met) in a nonconsanguineous Slovenian family. LARS2 c.1077delT leads to a frameshift at codon 360 of the 901 residue protein. LARS2 p.Thr522Asn occurs in the LARS2 catalytic domain at a site conserved from bacteria through mammals. LARS2 p.Thr629Met occurs in the LARS2 leucine-specific domain, which is adjacent to a catalytic loop critical in all species but for which primary sequence is not well conserved. A recently developed method of detecting remote homologies revealed threonine at this site in consensus sequences derived from multiple-species alignments seeded by human and E. coli residues at this region. Yeast complementation indicated that LARS2 c.1077delT is nonfunctional and that LARS2 p.Thr522Asn is partially functional. LARS2 p.Thr629Met was functional in this assay but might be insufficient as a heterozygote with the fully nonfunctional LARS2 c.1077delT allele. A known C. elegans strain with the protein-truncating alteration LARS-2 p.Trp247Ter was confirmed to be sterile. After HARS2, LARS2 is the second gene encoding mitochondrial tRNA synthetase to be found to harbor mutations leading to Perrault syndrome, further supporting a critical role for mitochondria in the maintenance of ovarian function and hearing.
Project description:DNA methylation is one of the best-characterized epigenetic modifications and has been implicated in numerous biological processes, including transposable element silencing, genomic imprinting and X chromosome inactivation. Compared with other epigenetic modifications, DNA methylation is thought to be relatively stable. Despite its role in long-term silencing, DNA methylation is more dynamic than originally thought as active DNA demethylation has been observed during specific stages of development. In the past decade, many enzymes have been proposed to carry out active DNA demethylation and growing evidence suggests that, depending on the context, this process may be achieved by multiple mechanisms. Insight into how DNA methylation is dynamically regulated will broaden our understanding of epigenetic regulation and have great implications in somatic cell reprogramming and regenerative medicine.
Project description:Nager syndrome is a rare human developmental disorder characterized by hypoplastic neural crest-derived craniofacial bones and limb defects. Mutations in SF3B4 gene, which encodes a component of the spliceosome, are a major cause for Nager. A review of the literature indicates that 45% of confirmed cases are also affected by conductive, sensorineural or mixed hearing loss. Conductive hearing loss is due to defective middle ear ossicles, which are neural crest derived, while sensorineural hearing loss typically results from defective inner ear or vestibulocochlear nerve, which are both derived from the otic placode. Animal model of Nager syndrome indicates that upon Sf3b4 knockdown cranial neural crest progenitors are depleted, which may account for the conductive hearing loss in these patients. To determine whether Sf3b4 plays a role in otic placode formation we analyzed the impact of Sf3b4 knockdown on otic development. Sf3b4-depleted Xenopus embryos exhibited reduced expression of several pan-placodal genes six1, dmrta1 and foxi4.1. We confirmed the dependence of placode genes expression on Sf3b4 function in animal cap explants expressing noggin, a BMP antagonist critical to induce placode fate in the ectoderm. Later in development, Sf3b4 morphant embryos had reduced expression of pax8, tbx2, otx2, bmp4 and wnt3a at the otic vesicle stage, and altered otic vesicle development. We propose that in addition to the neural crest, Sf3b4 is required for otic development, which may account for sensorineural hearing loss in Nager syndrome.
Project description:Podocyte depletion is a common mechanism driving progression in glomerular diseases. Alport Syndrome glomerulopathy, caused by defective α3α4α5 (IV) collagen heterotrimer production by podocytes, is associated with an increased rate of podocyte detachment detectable in urine and reduced glomerular podocyte number suggesting that defective podocyte adherence to the glomerular basement membrane might play a role in driving progression. Here a genetically phenotyped Alport Syndrome cohort of 95 individuals [urine study] and 41 archived biopsies [biopsy study] were used to test this hypothesis. Podocyte detachment rate (measured by podocin mRNA in urine pellets expressed either per creatinine or 24-hour excretion) was significantly increased 11-fold above control, and prior to a detectably increased proteinuria or microalbuminuria. In parallel, Alport Syndrome glomeruli lose an average 26 podocytes per year versus control glomeruli that lose 2.3 podocytes per year, an 11-fold difference corresponding to the increased urine podocyte detachment rate. Podocyte number per glomerulus in Alport Syndrome biopsies is projected to be normal at birth (558/glomerulus) but accelerated podocyte loss was projected to cause end-stage kidney disease by about 22 years. Biopsy data from two independent cohorts showed a similar estimated glomerular podocyte loss rate comparable to the measured 11-fold increase in podocyte detachment rate. Reduction in podocyte number and density in biopsies correlated with proteinuria, glomerulosclerosis, and reduced renal function. Thus, the podocyte detachment rate appears to be increased from birth in Alport Syndrome, drives the progression process, and could potentially help predict time to end-stage kidney disease and response to treatment.
Project description:TNF receptor 2 (TNFR2) has become one of the best potential immune checkpoints that might be targeted, mainly because of its vital role in tumor microenvironments (TMEs). Overexpression of TNFR2 in some tumor cells and essential function in immunosuppressive cells, especially regulatory T cells (Tregs), makes blocking TNFR2 an excellent strategy in cancer treatment; however, there is evidence showing that activating TNFR2 can also inhibit tumor progression in vivo. In this review, we will discuss drugs that block and activate TNFR2 under clinical trials or preclinical developments up till now. Meanwhile, we summarize and explore the possible mechanisms related to them.
Project description:Although lead has been associated with hearing loss in occupational settings and in children, little epidemiologic research has been conducted on the impact of cumulative lead exposure on age-related hearing loss in the general population. We determined whether bone lead levels, a marker of cumulative lead exposure, are associated with decreased hearing ability in 448 men from the Normative Aging Study, seen between 1962 and 1996 (2264 total observations). Air conduction hearing thresholds were measured at 0.25-8 kHz and pure-tone averages (PTA) (mean of 0.5, 1, 2 and 4 kHz) were computed. Tibia and patella lead levels were measured using K X-ray fluorescence between 1991 and 1996. In cross-sectional analyses, after adjusting for potential confounders including occupational noise, patella lead levels were significantly associated with poorer hearing thresholds at 2, 3, 4, 6 and 8 kHz and PTA. The odds of hearing loss significantly increased with patella lead levels. We also found significant positive associations between tibia lead and the rate change in hearing thresholds at 1, 2, and 8 kHz and PTA in longitudinal analyses. Our results suggest that chronic low-level lead exposure may be an important risk factor for age-related hearing loss and reduction of lead exposure could help prevent or delay development of age-related hearing loss.
Project description:PurposeMutations in USH2A gene are responsible for the greatest proportion of the Usher Syndrome (USH) population, among which more than 30% are frameshift mutations on exon 13. A clinically relevant animal model has been absent for USH2A-related vision loss. Here we sought to establish a rabbit model carrying USH2A frameshift mutation on exon 12 (human exon 13 equivalent).Methods CRISPR/Cas9 reagents targeting the rabbit USH2A exon 12 were delivered into rabbit embryos to produce an USH2A mutant rabbit line. The USH2A knockout animals were subjected to a series of functional and morphological analyses, including acoustic auditory brainstem responses, electroretinography, optical coherence tomography, fundus photography, fundus autofluorescence, histology, and immunohistochemistry.ResultsThe USH2A mutant rabbits exhibit hyper-autofluorescent signals on fundus autofluorescence and hyper-reflective signals on optical coherence tomography images as early as 4 months of age, which indicate retinal pigment epithelium damage. Auditory brainstem response measurement in these rabbits showed moderate to severe hearing loss. Electroretinography signals of both rod and cone function were decreased in the USH2A mutant rabbits starting from 7 months of age and further decreased at 15 to 22 months of age, indicating progressive photoreceptor degeneration, which is confirmed by histopathological examination.ConclusionsDisruption of USH2A gene in rabbits is sufficient to induce hearing loss and progressive photoreceptor degeneration, mimicking the USH2A clinical disease.Translational relevanceTo our knowledge, this study presents the first mammalian model of USH2 showing the phenotype of retinitis pigmentosa. This study supports the use of rabbits as a clinically relevant large animal model to understand the pathogenesis and to develop novel therapeutics for Usher syndrome.