Project description:The hydrocarboxyl radical (HOCO) is an important species in combustion and astrochemistry because it is easily converted to CO2 after hydrogen reduction. In this study, the formation mechanism of the HOCO radical in a CO-H2O system was investigated by direct ab initio molecular dynamics calculations. Two reactions were examined for HOCO formation. First, the reaction dynamics of the CO-H2O cluster cation, following the ionization of the neutral parent cluster CO(H2O) n (n = 1-4), were investigated. Second, the bimolecular collision reaction between CO and (H2O) n + was studied. In the ionization of the CO(H2O) n clusters (n = 3 and 4), proton transfer, expressed as CO(H2O) n + → CO-(OH)H3O+(H2O) n -2, occurred within the (H2O) n + cluster cation, and the HOCO radical was yielded as a product upon addition of CO and OH. This reaction proceeds under zero-point energy. Also, this radical was effectively formed from the collision reaction of CO with water cluster cation (H2O) n +, expressed as CO + OH(H3O+)(H2O) n -2 → HOCO-H3O+ + (H2O) n -2. If the intermolecular vibrational stretching mode is excited in the CO(H2O) n cluster (vibrational stretching between CO and the water cluster), the HOCO radical was detected after ionization when n = 2. The reaction mechanism was discussed based on the theoretical results.
Project description:Bimolecular nucleophilic substitution (SN2) and proton transfer are fundamental processes in chemistry and F- + CH3I is an important prototype of these reactions. Here we develop the first full-dimensional ab initio analytical potential energy surface (PES) for the F- + CH3I system using a permutationally invariant fit of high-level composite energies obtained with the combination of the explicitly-correlated CCSD(T)-F12b method, the aug-cc-pVTZ basis, core electron correlation effects, and a relativistic effective core potential for iodine. The PES accurately describes the SN2 channel producing I- + CH3F via Walden-inversion, front-side attack, and double-inversion pathways as well as the proton-transfer channel leading to HF + CH2I-. The relative energies of the stationary points on the PES agree well with the new explicitly-correlated all-electron CCSD(T)-F12b/QZ-quality benchmark values. Quasiclassical trajectory computations on the PES show that the proton transfer becomes significant at high collision energies and double-inversion as well as front-side attack trajectories can occur. The computed broad angular distributions and hot internal energy distributions indicate the dominance of indirect mechanisms at lower collision energies, which is confirmed by analyzing the integration time and leaving group velocity distributions. Comparison with available crossed-beam experiments shows usually good agreement.
Project description:We report a computational approach to evaluate the reaction mechanisms of glycosylation using ab initio molecular dynamics (AIMD) simulations in explicit solvent. The reaction pathways are simulated via free energy calculations based on metadynamics and trajectory simulations using Born-Oppenheimer molecular dynamics. We applied this approach to investigate the mechanisms of the glycosylation of glucosyl α-trichloroacetimidate with three acceptors (EtOH, i-PrOH, and t-BuOH) in three solvents (ACN, DCM, and MTBE). The reactants and the solvents are treated explicitly using density functional theory. We show that the profile of the free energy surface, the synchronicity of the transition state structure, and the time gap between leaving group dissociation and nucleophile association can be used as three complementary indicators to describe the glycosylation mechanism within the SN1/SN2 continuum for a given reaction. This approach provides a reliable means to rationalize and predict reaction mechanisms and to estimate lifetimes of oxocarbenium intermediates and their dependence on the glycosyl donor, acceptor, and solvent environment.
Project description:Identification of dispersed repetitive elements can be difficult, especially when elements share little or no homology with previously described repeats. Consequently, a growing number of computational tools have been designed to identify repetitive elements in an ab initio manner, i.e. without using prior sequence data. Here we present the results of side-by-side evaluations of six of the most widely used ab initio repeat finding programs. Using sequence from rice chromosome 12, tools were compared with regard to time requirements, ability to find known repeats, utility in identifying potential novel repeats, number and types of repeat elements recognized and compactness of family descriptions. The study reveals profound differences in the utility of the tools with some identifying virtually their entire substrate as repetitive, others making reasonable estimates of repetition, and some missing almost all repeats. Of note, even when tools recognized similar numbers of repeats they often showed marked differences in the nature and number of repeat families identified. Within the context of this comparative study, ReAS and RepeatScout showed the most promise in analysis of sequence reads and assembled genomic regions, respectively. Our results should help biologists identify the program(s), if any, that is best suited for their needs.
Project description:For Diels⁻Alder (DA) reactions in solution, an accurate and converged free energy (FE) surface at ab initio (ai) quantum mechanical/molecular mechanical (QM/MM) level is imperative for the understanding of reaction mechanism. However, this computation is still far too expensive. In a previous work, we proposed a new method termed MBAR+wTP, with which the computation of the ai FE profile can be accelerated by several orders of magnitude via a three-step procedure: (I) an umbrella sampling (US) using a semi-empirical (SE) QM/MM Hamiltonian is performed; (II) the FE profile is generated using the Multistate Bennett Acceptance Ratio (MBAR) analysis; and (III) a weighted Thermodynamic Perturbation (wTP) from the SE Hamiltonian to the ai Hamiltonian is performed to obtain the ai QM/MM FE profile using weight factors from the MBAR analysis. In this work, this method is extended to the calculations of two-dimensional FE surfaces of two Diels⁻Alder reactions of cyclopentadiene with either acrylonitrile or 1-4-naphthoquinone at ai QM/MM level. The accurate activation free energies at the ai QM/MM level, which are much closer to the experimental measurements than those calculated by other methods, indicate that this MBAR+wTP method can be applied in the studies of complex reactions in condensed phase with much-enhanced efficiency.
Project description:The splitting of quasi-Fermi levels (QFLs) represents a key concept utilized to describe finite-bias operations of semiconductor devices, but its atomic-scale characterization remains a significant challenge. Herein, the nonequilibrium QFL or electrochemical potential profiles within single-molecule junctions obtained from the first-principles multispace constrained-search density-functional formalism are presented. Benchmarking the standard nonequilibrium Green's function calculation results, it is first established that algorithmically the notion of separate electrode-originated nonlocal QFLs should be maintained within the channel region during self-consistent finite-bias electronic structure calculations. For the insulating hexandithiolate junction, the QFL profiles exhibit discontinuities at the left and right electrode interfaces and across the molecule the accompanying electrostatic potential drops linearly and Landauer residual-resistivity dipoles are uniformly distributed. For the conducting hexatrienedithiolate junction, on the other hand, the electrode QFLs penetrate into the channel region and produce split QFLs. With the highest occupied molecular orbital entering the bias window and becoming a good transport channel, the split QFLs are accompanied by the nonlinear electrostatic potential drop and asymmetric Landauer residual-resistivity dipole formation. Our findings underscore the importance of the first-principles extraction of QFLs in nanoscale junctions and point to a future direction for the computational design of next-generation semiconductor devices.
Project description:Polymeric graphitic carbon nitride (gCN) compounds are promising materials in photoactivated electrocatalysis thanks to their peculiar structure of periodically spaced voids exposing reactive pyridinic N atoms. These are excellent sites for the adsorption of isolated transition metal atoms or small clusters that can highly enhance the catalytic properties. However, several polymorphs of gCN can be obtained during synthesis, differing for their structural and electronic properties that ultimately drive their potential as catalysts. The accurate characterization of the obtained material is critical for the correct rationalization of the catalytic results; however, an unambiguous experimental identification of the actual polymer is challenging, especially without any reference spectroscopic features for the assignment. In this work, we optimized several models of melem-based gCN, taking into account different degrees of polymerization and arrangement of the monomers, and we present a thorough computational characterization of their simulated XRD, XPS, and NEXAFS spectroscopic properties, based on state-of-the-art density functional theory calculations. Through this detailed study, we could identify the peculiar fingerprints of each model and correlate them with its structural and/or electronic properties. Theoretical predictions were compared with the experimental data whenever they were available.
Project description:Amorphous carbon (a-C) has attracted considerable interest due to its desirable properties, which are strongly dependent on its structure, density and impurities. Using ab initio molecular dynamics simulations we show that the sp2/sp3 content and underlying structural order of a-C produced via liquid quenching evolve at high temperatures and pressures on sub-nanosecond timescales. Graphite-like densities ([Formula: see text] 2.7 g/cc) favor the formation of layered arrangements characterized by sp2 disordered bonding resembling recently synthesized monolayer amorphous carbon (MAC), while at diamond-like densities ([Formula: see text] 3.3 g/cc) the resulting structures are dominated by disordered tetrahedral sp3 hybridization typical of diamond-like amorphous carbon (DLC). At intermediate densities the system is a highly compressible mixture of coexisting sp2 and sp3 regions that continue to segregate over 10's of picoseconds. The addition of nitrogen (20.3%) (a-CN) generates major system features similar with those of a-C, but has the unexpected effect of reinforcing the thermodynamically disfavored carbon structural motifs at low and high densities, while inhibiting phase separation in the intermediate region. At the same time, no nitrogen elimination from the carbon framework is observed above [Formula: see text] 2.8 g/cc, suggesting that nitrogen impurities are likely to remain embedded in the carbon structures during fast temperature quenches at high pressures.
Project description:The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide-and-conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction-type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre-exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude).
Project description:In biomedical applications, TiO2 nanoparticles are generally coated with polymers to prevent agglomeration, improve biocompatibility, and reduce cytotoxicity. Although the synthesis processes of such composite compounds are well established, there is still a substantial lack of information on the nature of the interaction between the titania surface and the organic macromolecules. In this work, the adsorption of polyethylene glycol (PEG) on the TiO2 (101) anatase surface is modeled by means of dispersion-corrected density functional theory (DFT-D2) calculations. The two extreme limits of an infinite PEG polymer [-(OCH2CH2) n ], on one side, and of a short PEG dimer molecule [H(OCH2CH2)2OH], on the other, are analyzed. Many different molecular configurations and modes of adsorption are compared at increasing surface coverage densities. At low and medium coverage, PEG prefers to lay down on the surface, while at full coverage, the adsorption is maximized when PEG molecules bind perpendicularly to the surface and interact with each other through lateral dispersions, following a mushroom to brush transition. Finally, we also consider the adsorption of competing water molecules at different coverage densities, assessing whether PEG would remain bonded to the surface or desorb in the presence of the aqueous solvent.