Project description:Chewing gum containing xylitol may help prevent caries by reducing levels of mutans streptococci (MS) and lactobacilli in saliva and plaque. Very little is known about other species which are possibly beneficial to oral health. In this study, we employed high-throughput sequencing of the 16S rRNA gene to profile microbial communities of saliva and plaque following short-term consumption of xylitol and sorbitol containing chewing gum. Participants (n = 30) underwent a washout period and were randomly assigned to one of two groups. Each group chewed either xylitol or sorbitol gum for three weeks, before undergoing a second four-week washout period after which they switched to the alternate gum for three weeks. Analysis of samples collected before and after each intervention identified distinct plaque and saliva microbial communities that altered dependent on the order in which gum treatments were given. Neither the xylitol nor sorbitol treatments significantly affected the bacterial composition of plaque. Lactobacilli were undetected and the number of Streptococcus mutans sequence reads was very low and unaffected by either xylitol or sorbitol. However, sorbitol affected several other streptococcal species in saliva including increasing the abundance of S. cristatus, an oral commensal shown to inhibit bacteria associated with chronic periodontitis.
Project description:Xylitol dehydrogenase (XDH) is one of the key enzymes in d-xylose metabolism, catalyzing the oxidation of xylitol to d-xylulose. Two copies of the XYL2 gene encoding XDH in the diploid yeast Candida tropicalis were sequentially disrupted using the Ura-blasting method. The XYL2-disrupted mutant, BSXDH-3, did not grow on a minimal medium containing d-xylose as a sole carbon source. An enzyme assay experiment indicated that BSXDH-3 lost apparently all XDH activity. Xylitol production by BSXDH-3 was evaluated using a xylitol fermentation medium with glucose as a cosubstrate. As glucose was found to be an insufficient cosubstrate, various carbon sources were screened for efficient cofactor regeneration, and glycerol was found to be the best cosubstrate. BSXDH-3 produced xylitol with a volumetric productivity of 3.23 g liter(-1) h(-1), a specific productivity of 0.76 g g(-1) h(-1), and a xylitol yield of 98%. This is the first report of gene disruption of C. tropicalis for enhancing the efficiency of xylitol production.
Project description:Xylitol is a sugar alcohol with five carbons that can be used in the pharmaceutical and food industries. It is industrially produced by chemical route; however, a more economical and environmentally friendly production process is of interest. In this context, this study aimed to select wild yeasts able to produce xylitol and compare their performance in sugarcane bagasse hydrolysate. For this, 960 yeast strains, isolated from soil, wood, and insects have been prospected and selected for the ability to grow on defined medium containing xylose as the sole carbon source. A total of 42 yeasts was selected and their profile of sugar consumption and metabolite production were analyzed in microscale fermentation. The six best xylose-consuming strains were molecularly identified as Meyerozyma spp. The fermentative kinetics comparisons on defined medium and on sugarcane bagasse hydrolysate showed physiological differences among these strains. Production yields vary from YP/S = 0.25 g/g to YP/S = 0.34 g/g in defined medium and from YP/S = 0.41 g/g to YP/S = 0.60 g/g in the hydrolysate. Then, the xylitol production performance of the best xylose-consuming strain obtained in the screening, which was named M.guilliermondii B12, was compared with the previously reported xylitol producing yeasts M.guilliermondii A3, Spathaspora sp. JA1, and Wickerhamomycesanomalus 740 in sugarcane bagasse hydrolysate under oxygen-limited conditions. All the yeasts were able to metabolize xylose, but W.anomalus 740 showed the highest xylitol production yield, reaching a maximum of 0.83 g xylitol/g of xylose in hydrolysate. The screening strategy allowed identification of a new M.guilliermondii strain that efficiently grows in xylose even in hydrolysate with a high content of acetic acid (~6 g/L). In addition, this study reports, for the first time, a high-efficient xylitol producing strain of W.anomalus, which achieved, to the best of our knowledge, one of the highest xylitol production yields in hydrolysate reported in the literature.
Project description:Bioproduction of renewable chemicals is considered as an urgent solution for fossil energy crisis. However, despite tremendous efforts, it is still challenging to generate microbial strains that can produce target biochemical to high levels. Here, we report an example of biosynthesis of high-value and easy-recoverable derivatives built upon natural microbial pathways, leading to improvement in bioproduction efficiency. By leveraging pathways in solventogenic clostridia for co-producing acyl-CoAs, acids and alcohols as precursors, through rational screening for host strains and enzymes, systematic metabolic engineering-including elimination of putative prophages, we develop strains that can produce 20.3 g/L butyl acetate and 1.6 g/L butyl butyrate. Techno-economic analysis results suggest the economic competitiveness of our developed bioprocess. Our principles of selecting the most appropriate host for specific bioproduction and engineering microbial chassis to produce high-value and easy-separable end products may be applicable to other bioprocesses.
Project description:The NAD+-dependent xylitol dehydrogenase from the xylose-assimilating yeast Galactocandida mastotermitis has been purified in high yield (80%) and characterized. Xylitol dehydrogenase is a heteronuclear multimetal protein that forms homotetramers and contains 1 mol of Zn2+ ions and 6 mol of Mg2+ ions per mol of 37.4 kDa protomer. Treatment with chelating agents such as EDTA results in the removal of the Zn2+ ions with a concomitant loss of enzyme activity. The Mg2+ ions are not essential for activity and are removed by chelation or extensive dialysis without affecting the stability of the enzyme. Results of initial velocity studies at steady state for d-sorbitol oxidation and d-fructose reduction together with the characteristic patterns of product inhibition point to a compulsorily ordered Theorell-Chance mechanism of xylitol dehydrogenase in which coenzyme binds first and leaves last. At pH 7.5, the binding of NADH (Ki approximately 10 microM) is approx. 80-fold tighter than that of NAD+. Polyhydroxyalcohols require at least five carbon atoms to be good substrates of xylitol dehydrogenase, and the C-2 (S), C-3 (R) and C-4 (R) configuration is preferred. Therefore xylitol dehydrogenase shares structural and functional properties with medium-chain sorbitol dehydrogenases.
Project description:Renewable energy production is necessary to halt climate change and reverse associated biodiversity losses. However, generating the required technologies and infrastructure will drive an increase in the production of many metals, creating new mining threats for biodiversity. Here, we map mining areas and assess their spatial coincidence with biodiversity conservation sites and priorities. Mining potentially influences 50 million km2 of Earth's land surface, with 8% coinciding with Protected Areas, 7% with Key Biodiversity Areas, and 16% with Remaining Wilderness. Most mining areas (82%) target materials needed for renewable energy production, and areas that overlap with Protected Areas and Remaining Wilderness contain a greater density of mines (our indicator of threat severity) compared to the overlapping mining areas that target other materials. Mining threats to biodiversity will increase as more mines target materials for renewable energy production and, without strategic planning, these new threats to biodiversity may surpass those averted by climate change mitigation.
Project description:BackgroundSugarcane hemicellulosic material is a compelling source of usually neglected xylose that could figure as feedstock to produce chemical building blocks of high economic value, such as xylitol. In this context, Saccharomyces cerevisiae strains typically used in the Brazilian bioethanol industry are a robust chassis for genetic engineering, given their robustness towards harsh operational conditions and outstanding fermentation performance. Nevertheless, there are no reports on the use of these strains for xylitol production using sugarcane hydrolysate.ResultsPotential single-guided RNA off-targets were analyzed in two preeminent industrial strains (PE-2 and SA-1), providing a database of 5'-NGG 20 nucleotide sequences and guidelines for the fast and cost-effective CRISPR editing of such strains. After genomic integration of a NADPH-preferring xylose reductase (XR), FMYX (SA-1 hoΔ::xyl1) and CENPKX (CEN.PK-122 hoΔ::xyl1) were tested in varying cultivation conditions for xylitol productivity to infer influence of the genetic background. Near-theoretical yields were achieved for all strains; however, the industrial consistently outperformed the laboratory strain. Batch fermentation of raw sugarcane straw hydrolysate with remaining solid particles represented a challenge for xylose metabolization, and 3.65 ± 0.16 g/L xylitol titer was achieved by FMYX. Finally, quantification of NADPH - cofactor implied in XR activity - revealed that FMYX has 33% more available cofactors than CENPKX.ConclusionsAlthough widely used in several S. cerevisiae strains, this is the first report of CRISPR-Cas9 editing major yeast of the Brazilian bioethanol industry. Fermentative assays of xylose consumption revealed that NADPH availability is closely related to mutant strains' performance. We also pioneer the use of sugarcane straw as a substrate for xylitol production. Finally, we demonstrate how industrial background SA-1 is a compelling chassis for the second-generation industry, given its inhibitor tolerance and better redox environment that may favor production of reduced sugars.
Project description:Co-ordination of catalytic Zn2+ in sorbitol/xylitol dehydrogenases of the medium-chain dehydrogenase/reductase superfamily involves direct or water-mediated interactions from a glutamic acid residue, which substitutes a homologous cysteine ligand in alcohol dehydrogenases of the yeast and liver type. Glu154 of xylitol dehydrogenase from the yeast Galactocandida mastotermitis (termed GmXDH) was mutated to a cysteine residue (E154C) to revert this replacement. In spite of their variable Zn2+ content (0.10-0.40 atom/subunit), purified preparations of E154C exhibited a constant catalytic Zn2+ centre activity (kcat) of 1.19+/-0.03 s(-1) and did not require exogenous Zn2+ for activity or stability. E154C retained 0.019+/-0.003% and 0.74+/-0.03% of wild-type catalytic efficiency (kcat/K(sorbitol)=7800+/-700 M(-1) x s(-1)) and kcat (=161+/-4 s(-1)) for NAD+-dependent oxidation of sorbitol at 25 degrees C respectively. The pH profile of kcat/K(sorbitol) for E154C decreased below an apparent pK of 9.1+/-0.3, reflecting a shift in pK by about +1.7-1.9 pH units compared with the corresponding pH profiles for GmXDH and sheep liver sorbitol dehydrogenase (termed slSDH). The difference in pK for profiles determined in 1H2O and 2H2O solvent was similar and unusually small for all three enzymes (approximately +0.2 log units), suggesting that the observed pK in the binary enzyme-NAD+ complexes could be due to Zn2+-bound water. Under conditions eliminating their different pH-dependences, wild-type and mutant GmXDH displayed similar primary and solvent deuterium kinetic isotope effects of 1.7+/-0.2 (E154C, 1.7+/-0.1) and 1.9+/-0.3 (E154C, 2.4+/-0.2) on kcat/K(sorbitol) respectively. Transient kinetic studies of NAD+ reduction and proton release during sorbitol oxidation by slSDH at pH 8.2 show that two protons are lost with a rate constant of 687+/-12 s(-1) in the pre-steady state, which features a turnover of 0.9+/-0.1 enzyme equivalents as NADH was produced with a rate constant of 409+/-3 s(-1). The results support an auxiliary participation of Glu154 in catalysis, and possible mechanisms of proton transfer in sorbitol/xylitol dehydrogenases are discussed.
Project description:The benefits of using transgenic switchgrass with decreased levels of caffeic acid 3-O-methyltransferase (COMT) as biomass feedstock have been clearly demonstrated. However, its effect on the soil microbial community has not been assessed. Here we report metagenomic and metatranscriptomic analyses of root-associated soil from COMT switchgrass compared with nontransgenic counterparts.
Project description:Benzyl alcohol is an aromatic hydrocarbon used as a solvent and an intermediate chemical in the pharmaceutical, cosmetics, and flavor/fragrance industries. The de novo biosynthesis of benzyl alcohol directly from renewable glucose was herein explored using a non-natural pathway engineered in Escherichia coli. Benzaldehyde was first produced from endogenous phenylpyruvate via three heterologous steps, including hydroxymandelate synthase (encoded by hmaS) from Amycolatopsis orientalis, followed by (S)-mandelate dehydrogenase (encoded by mdlB) and phenylglyoxylate decarboxylase (encoded by mdlC) from Pseudomonas putida ATCC 12633. The subsequent rapid and efficient reduction of benzaldehyde to benzyl alcohol occurred by the combined activity and native regulation of multiple endogenous alcohol dehydrogenases and/or aldo-keto reductases. Through systematic deletion of competing aromatic amino acid biosynthesis pathways to promote endogenous phenylpyruvate availability, final benzyl alcohol titers as high as 114±1 mg/L were realized, representing a yield of 7.6±0.1 mg/g on glucose and a ~5-fold improvement over initial strains.