Ontology highlight
ABSTRACT: Background
Globally, iron-deficiency anemia (IDA) remains a major health obstacle. This health condition has been identified in 47% of pre-school students (aged 0 to 5 years), 42% of pregnant females, and 30% of non-pregnant females (aged 15 to 50 years) worldwide according to the WHO. Environmental and genetic factors play a crucial role in the development of IDA; genetic testing has revealed the association of a number of polymorphisms with iron status and serum ferritin. Aim
The current study aims to reveal the association of TMPRSS6 rs141312 and BMP2 rs235756 with the iron status of females in Saudi Arabia. Methods
A cohort of 108 female university students aged 18–25 years was randomly selected to participate: 50 healthy and 58 classified as iron deficient. A 3–5 mL sample of blood was collected from each one and analyzed based on hematological and biochemical iron status followed by genotyping by PCR. Results
The genotype distribution of TMPRSS6 rs141312 was 8% (TT), 88% (TC) and 4% (CC) in the healthy group compared with 3.45% (TT), 89.66% (TC) and 6.89% (CC) in the iron-deficient group (P = 0.492), an insignificant difference in the allelic distribution. The genotype distribution of BMP2 rs235756 was 8% (TT), 90% (TC) and 2% (CC) in the healthy group compared with 3.45% (TT), 82.76% (TC) and 13.79% (CC) in iron-deficient group (P = 0.050) and was significantly associated with decreased ferritin status (P = 0.050). In addition, TMPRSS6 rs141312 is significantly (P<0.001) associated with dominant genotypes (TC+CC) and increased risk of IDA while BMP2 rs235756 is significantly (P<0.026) associated with recessive homozygote CC genotypes and increased risk of IDA. Conclusion
Our finding potentially helps in the early prediction of iron deficiency in females through the genetic testing.
SUBMITTER: Al-Amer O
PROVIDER: S-EPMC8592490 | biostudies-literature |
REPOSITORIES: biostudies-literature