Project description:Ionic Liquids are a broad group of salts with low melting points that can be specifically tuned for a broad range of applications. Despite being initially considered “green” solvents, their better environmental friendliness compared to traditional solvents has been increasingly challenged. In this study, we aimed to investigate the molecular effects of ILs exposure by using RNA-sequencing to study differential gene expression patterns. Thus, we exposed Daphnia magna to 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-dodecyl chloride-3-methylimidazolium ([C12mim]Cl) and cholinium chloride ([Chol]Cl). Results suggest that the three ILs share several mechanisms of toxicity, including cellular membrane and cytoskeleton damage, oxidative stress, inhibition of antioxidant enzymes, mitochondrial affectation, changes in protein biosynthesis and energy production, DNA damage, and ultimately, programmed cell death and disease initiation. Overall, the dataset revealed that [C2mim]Cl and [C12mim]Cl were, respectively, the least and the most toxic ILs at the transcriptional level. Also, it is reinforced that [Chol]Cl is not devoid of environmental hazardous potential. Unique gene expression signatures could also be identified for each IL.
Project description:Though local structures in ionic liquids are dominated by strong Coulomb forces, directional hydrogen bonds can also influence the physicochemical properties of imidazolium-based ionic liquids. In particular, the C-2 position of the imidazolium cation is acidic and can bind with suitable hydrogen bond acceptor sites of molecular solvents dissolved in imidazolium-based ionic liquids. In this report, we identify hydrogen-bonded microenvironments of the model ionic liquid, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, and the changes that occur when molecular solvents are dissolved in it by using a C-D infrared reporter at the C-2 position of the cation. Our linear and nonlinear infrared experiments, along with computational studies, indicate that the molecular solvent dimethyl sulfoxide can form strong hydrogen-bonded dimers with the cation of the ionic liquid at the C-2 position. In contrast, acetone, which is also a hydrogen bond acceptor similar to dimethyl sulfoxide, does not show evidence of cation-solvent hydrogen-bonded conformers at the C-2 position. The outcome of our study on a broad scale strengthens the importance of cation-solute interactions in ionic liquids.
Project description:This study presents the large scale computer simulations of two common fluorophores, N-methyl-6-oxyquinolinium betaine and coumarin 153, in five polar or ionic solvents. The validity of linear response approximations to calculate the time-dependent Stokes shift is evaluated in each system. In most studied systems linear response theory fails. In ionic liquids the magnitude of the overall response is largely overestimated, and linear response theory is not able to capture the individual contributions of cations and anions. In polar liquids, the timescales of solvation dynamics are often not correctly reproduced. These observations are complemented by a detailed analysis of Gaussian statistics including higher order correlation functions, variance of the energy gap distribution and its time evolution. The analysis of higher order correlation functions was found to be not suitable to predict a failure of linear response theory. Further analysis of radial distribution functions and hydrogen bonds in the ground and excited state, as well as the time evolution of the number of hydrogen bonds after solute excitation reveal an influence of solvent structure in some of the studied systems.
Project description:We investigated the influence of anion type (salicylate, [(MOB)MIm][Sal], vs chloride, [(MOB)MIm][Cl]) of imidazolium-based ionic liquid (IL) and its content on the curing kinetics of bisphenol A diglicydyl ether (DGEBA of molecular weight M n = 340 g/mol). Further physicochemical properties (i.e., glass transition temperature, T g, and conductivity, σdc) of produced polymers were investigated. The polymerization of the studied systems was examined at various molar ratios (1:1, 10:1, and 20:1) at different reaction temperatures (T reaction = 353-383 K) by using differential scanning calorimetry (DSC). Interestingly, both DGEBA/IL compositions studied herein revealed significantly different reaction kinetics and yielded materials of completely distinct physical properties. Surprisingly, in contrast to [(MOB)MIm][Cl], for the low concentration of [(MOB)MIm][Sal] in the reaction mixture, an additional step in the kinetic curves, likely due to the combined enhanced initiation activity of anion (salicylate)-cation (imidazolium-based), was noted. To thoroughly analyze the kinetics of all studied systems, including the two-step kinetics of DGEBA/[(MOB)MIm][Sal], we applied a new approach that relies on the combination of the two phenomenological Avrami equations. Analysis of the determined constant rates revealed that the reaction occurring in the presence of the salicylate anion is characterized by higher activation energy with respect to those with the chloride. Moreover, DGEBA/[(MOB)MIm][Sal] cured materials have higher T g in comparison to DGEBA polymerized with [(MOB)MIm][Cl] independent of the IL concentration. This fact might indicate that, most likely, the products of hardening are highly cross-linked (high T g) or oligomeric linear polymers (low T g) in the former and latter cases, respectively. Such a change in the chemical structure of the polymer is also reflected in the dc conductivity measured at the glass transition temperature, which is much higher for DGEBA cured with [(MOB)MIm][Cl]. Herein, we have clearly demonstrated that the type of anion has a crucial impact on the polymerization mechanism, kinetics, and properties of produced materials.
Project description:Ionic liquids (ILs) have become nearly ubiquitous solvents and their interactions with biomolecules has been a focus of study. Here, we used the fluorescence emission of DAPI, a groove binding fluorophore, coupled with molecular dynamics (MD) simulations to report on interactions between imidazolium chloride ([Imn,1]+) ionic liquids and a synthetic DNA oligonucleotide composed entirely of T/A bases (7(TA)) to elucidate the effects ILs on a model DNA duplex. Spectral shifts on the order of 500-1000 cm-1, spectral broadening (~1000 cm-1), and excitation and emission intensity ratio changes combine to give evidence of an increased DAPI environment heterogeneity on added IL. Fluorescence lifetimes for DAPI/IL solutions yielded two time constants 0.15 ns (~80% to 60% contribution) and 2.36-2.71 ns for IL up to 250 mM. With DNA, three time constants were required that varied with added IL (0.33-0.15 ns (1-58% contribution), ~1.7-1.0 ns (~5% contribution), and 3.8-3.6 ns (94-39% contribution)). MD radial distribution functions revealed that π-π stacking interactions between the imidazolium ring were dominant at lower IL concentration and that electrostatic and hydrophobic interactions become more prominent as IL concentration increased. Alkyl chain alignment with DNA and IL-IL interactions also varied with IL. Collectively, our data showed that, at low IL concentration, IL was primarily bound to the DNA minor groove and with increased IL concentration the phosphate regions and major groove binding sites were also important contributors to the complete set of IL-DNA duplex interactions.
Project description:Conductive hydrogels with stretchable, flexible and wearable properties have made significant contributions in the area of modern electronics. The polyacrylamide/alginate hydrogels are one of the potential emerging materials for application in a diverse range of fields because of their high stretch and toughness. However, most researchers focus on the investigation of their mechanical and swelling behaviors, and the adhesion and effects of the ionic liquids on the conductivities of polyacrylamide/alginate hydrogels are much less explored. Herein, methacrylated lysine and different alkyl chain substituted imidazole-based monomers (IMCx, x = 2, 4, 6 and 8) were introduced to prepare a series of novel pAMAL-IMCx-Ca hydrogels. We systematically investigated their macroscopic and microscopic properties through tensile tests, electrochemical impedance spectra and scanning electron microscopy, as well as Fourier transform infrared spectroscopy, and demonstrated that an alkyl chain length of the IMCx plays an important role in the designing of hydrogel strain sensors. The experiment result shows that the hexyl chains of IMC6 can effectively entangle with LysMA through hydrophobic and electrostatic interactions, which significantly enhance the mechanical strength of the hydrogels. Furthermore, the different strain rates and the durability of the pAMAL-IMC6-Ca hydrogel were investigated and the relative resistance responses remain almost the same in both conditions, making it a potential candidate for wearable strain sensors.
Project description:Antibiotics are considered one of the great "miracles" of the 20th century. Now in the 21st century in the post-antibiotic era, the miracle is turning into a nightmare, due to the growing problem of the resistance of microorganisms to classic antimicrobials and the non-investment by the pharmaceutical industry in new antimicrobial agents. Unfortunately, the current COVID-19 pandemic has demonstrated the global risks associated with uncontrolled infections and the various forms of impact that such a pandemic may have on the economy and on social habits besides the associated morbidity and mortality. Therefore, there is an urgent need to recycle classic antibiotics, as is the case in the use of ionic liquids (ILs) based on antibiotics. Thus, the aim of the present review is to summarize the data on ILs, mainly those with antimicrobial action and especially against resistant strains. The main conclusions of this article are that ILs are flexible due to their ability to modulate cations and anions as a salt, making it possible to combine the properties of both and multiplying the activity of separate cations and anions. Also, these compounds have low cost methods of production, which makes it highly attractive to explore them, especially as antimicrobial agents and against resistant strains. ILs may further be combined with other therapeutic strategies, such as phage or lysine therapy, enhancing the therapeutic arsenal needed to fight this worldwide problem of antibacterial resistance. Thus, the use of ILs as antibiotics by themselves or together with phage therapy and lysine therapy are promising alternatives against pathogenic microorganisms, and may have the possibility to be used in new ways in order to restrain uncontrolled infections.
Project description:The Debus-Radziszewski imidazole synthesis was adapted to directly yield long-chain imidazolium ionic liquids. Imidazolium acetate ionic liquids with side-chains up to sixteen carbon atoms were synthesised in excellent yields via an on-water, one-pot reaction. The imidazolium acetate ILs acted as surfactants when dissolved in various solvents. The imidazolium acetate ionic liquids were also derivatised via an acid metathesis to the chloride, nitrate, and hydrogen oxalate derivatives. The thermal behaviour of all the ionic liquids was determined via thermogravimetric and calorimetric analysis.
Project description:Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed.