Project description:Clathrates of the tetrel (Tt = Si, Ge, Sn) elements are host-guest structures that can undergo Li alloying reactions with high capacities. However, little is known about how the cage structure affects the phase transformations that take place during lithiation. To further this understanding, the structural changes of the type VIII clathrate Ba8Ga16-δSn30+δ (δ ≈ 1) during lithiation are investigated and compared to those in β-Sn with ex situ X-ray total scattering measurements and pair distribution function (PDF) analysis. The results show that the type VIII clathrate undergoes an alloying reaction to form Li-rich amorphous phases (LixBa0.17Ga0.33Sn0.67, x = 2-3) with local structures similar to those in the crystalline binary Li-Sn phases that form during the lithiation of β-Sn. As a result of the amorphous phase transition, the type VIII clathrate reacts at a lower voltage (0.25 V vs Li/Li+) compared to β-Sn (0.45 V) and goes through a solid-solution reaction after the initial conversion of the crystalline clathrate phase. Cycling experiments suggest that the amorphous phase persists after the first lithiation and results in considerably better cycling than in β-Sn. Density functional theory (DFT) calculations suggest that topotactic Li insertion into the clathrate lattice is not favorable due to the high energy of the Li sites, which is consistent with the experimentally observed amorphous phase transformation. The local structure in the clathrate featuring Ba atoms surrounded by a cage of Ga and Sn atoms is hypothesized to kinetically circumvent the formation of Li-Sn or Li-Ga crystalline phases, which results in better cycling and a lower reaction voltage. Based on the improved electrochemical performance, clathrates could act as tunable precursors to form amorphous Li alloying phases with novel electrochemical properties.
Project description:Engineering lattice thermal conductivity requires to control the heat carried by atomic vibration waves, the phonons. The key parameter for quantifying it is the phonon lifetime, limiting the travelling distance, whose determination is however at the limits of instrumental capabilities. Here, we show the achievement of a direct quantitative measurement of phonon lifetimes in a single crystal of the clathrate Ba7.81Ge40.67Au5.33, renowned for its puzzling 'glass-like' thermal conductivity. Surprisingly, thermal transport is dominated by acoustic phonons with long lifetimes, travelling over distances of 10 to 100 nm as their wave-vector goes from 0.3 to 0.1 Å-1. Considering only low-energy acoustic phonons, and their observed lifetime, leads to a calculated thermal conductivity very close to the experimental one. Our results challenge the current picture of thermal transport in clathrates, underlining the inability of state-of-the-art simulations to reproduce the experimental data, thus representing a crucial experimental input for theoretical developments.Phonon lifetime is a fundamental parameter of thermal transport however its determination is challenging. Using inelastic neutron scattering and the neutron resonant spin-echo technique, Lory et al. determine the acoustic phonon lifetime in a single crystal of clathrate Ba7.81Ge40.67Au5.33.
Project description:Tin clathrate-II framework-substituted compositions are of current interest as potential thermoelectric materials for medium-temperature applications. A review of the literature reveals different compositions reported with varying physical properties, which depend strongly on the exact composition as well as the processing conditions. We therefore initiated an approach whereby single crystals of two different (K,Ba)16(Ga,Sn)136 compositions were first obtained, followed by grinding of the crystals into fine powder for low temperature spark plasma sintering consolidation into dense polycrystalline solids and subsequent high temperature transport measurements. Powder X-ray refinement results indicate that the hexakaidecahedra are empty, K and Ba occupying only the decahedra. Their electrical properties depend on composition and have very low thermal conductivities. The structural and transport properties of these materials are compared to that of other Sn clathrate-II compositions.
Project description:Based on global particle-swarm optimization algorithm and density functional theory methods, we predicted an alloyed Si2Ge compond with body centered tetragonal type VII clathrate (space group I4/mmm) built by a truncated octahedron fromed by six quadrangles and eight hexagons ([4668]). Si2Ge clathrate is 0.06 eV/atom lower than VII Si clathrate and thermally stable up to 1000 K. It has an indirect band gap of 0.23 eV, high p-doping Seebeck coefficient and n-doping electrical conductivity. It owns a low lattice thermal conductivity of 0.28 W/mK at 300 K because of its weak bonding and strong anharmonic interaction of longitudinal acoustic and low-lying optical phonons. The moderate electronic transport properties together with low lattice thermal conductivity results in a high optimal thermoeletric performance value of 2.54 (1.49) at 800 (1000) K in n (p)-doped Si2Ge.
Project description:The precipitation mechanism of the δ' (Al3Li) phase in Al-Li alloys has been controversially discussed in recent decades, specifically with respect to a conjectured congruent ordering process. However, kinetics in the Al-Li system does not allow to resolve the intermediate stages of precipitation and hence to experimentally clarify this issue. In this paper, we are revisiting the subject in ternary Al-Cu-Li alloys with pronouncedly slower kinetics, employing Transmission Electron Microscopy, High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy, Differential Scanning Calorimetry and Atom Probe Tomography. The results show clear evidence for congruent ordering in a selected compositional range, revealing an already strongly L12 ordered microstructure after natural aging with a chemically homogeneous Li distribution and a decomposition of the alloy upon annealing at elevated temperatures. The presented study of the δ' precipitation evaluates the reaction pathway of this process and compares it to the predictions of the Bragg-Williams-Gorsky model with respect to decomposition and ordering in this alloy system.
Project description:A quenching technique was used to prepare the chalcogenide system of the Se60−xGe35Ga5Sbx (x = 0, 5, and 10 at. %), which was deposited as thin films onto glass substrates using a thermal evaporation technique. X-ray diffraction patterns were used for structure examination of the fabricated compositions, which exposes the amorphous nature of the deposited samples. Meanwhile, the chemical compositions of the prepared samples were evaluated and calculated via the energy-dispersive X-ray spectroscopy (EDX), which was in agreement with the measured compositional element percentages of the prepared samples. Based on the optical reflectance R and transmittance T spectra from the recorded spectrophotometric data ranging from 350 to 2500 nm, the influence of the Sb element on the Se60−xGe35Ga5Sbx thin films’ optical properties was studied. The film thickness and the refractive index were calculated via Swanepoel’s technique from optical transmittance data. It has been observed that the films’ refractive index increases with increasing x value over the spectral range. The refractive index data were used to evaluate the dielectric constants and estimate dispersion parameters Eo and Ed using the Wemple−DiDomenico model. The optical energy gap Egopt was calculated for the tested compositions. The result of the optical absorption analysis shows the presence of allowed direct and indirect transitions.
Project description:Single crystals of a new oxide, Ba33Zn22Al8O67 (melting point = 1452 K), were grown in a melt-solidified sample prepared by heating a compact of a BaCO3, ZnO, and Al2O3 mixed powder in a dry airflow. Ba33Zn22Al8O67 can be handled in dry air, but it decomposes into carbonates, hydroxides, and hydrates in humid air. Single-crystal X-ray structure analysis clarified that Ba33Zn22Al8O67 crystallizes in a cubic cell (a = 16.3328 (3) Å, space group F23) having a three-dimensional Zn/AlO4 framework in which {([OZn4]/Ba)(Zn/AlO4)4} motifs are connected to each other by bridging Zn/AlO4 tetrahedra. A Ba atom or a [OZn4] cluster is statistically situated at the center of the motif with a probability of 0.5. Motifs of another type, {([O(Zn/Al)4])(Zn/AlO4)4}, are isolated from the Zn/AlO4 framework. These motifs, {([OZn4]/Ba)(Zn/AlO4)4} and {([O(Zn/Al)4])(Zn/AlO4)4}, are alternatingly arranged along the a axis like a checkered cube, and Ba atoms are situated between the motifs. A linear thermal expansion coefficient of 10.4 × 10-6 K-1 was measured in an Ar gas flow at 301-873 K for a sintered Ba33Zn22Al8O67 polycrystalline sample with a relative density of 73%. A relative permittivity of 31 and a temperature coefficient of 15 ppm K-1 at 301 K were obtained for another sintered sample (relative density = 70%) in a dry airflow. The electrical conductivity at 1073 K and the activation energy for conduction at 923-1073 K measured for the sintered samples in dry and wet airflows were 6.2 × 10-7 S cm-1 and 0.65 eV and 2.9 × 10-6 S cm-1 and 0.59 eV, respectively.
Project description:A high-angle annular dark field scanning transmission electron microscopy study of the intermetallic compound Al74Cr15Fe11 reveals a quasiperiodic structure significantly differing from the ones known so far. In contrast to the common quasi-unit-cells based on Gummelt decagons, the present structure is related to a covering formed by Lück decagons, which can also be described by a Hexagon-Bow-Tie tiling.
Project description:A theoretical study of geometric and electronic structures, stability and magnetic properties of both neutral and anionic Ge16M0/- clusters with M being a first-row 3d transition metal atom, is performed using quantum chemical approaches. Both the isoelectronic Ge16Sc- anion and neutral Ge16Ti that have a perfect Frank-Kasper tetrahedral T d shape and an electron shell filled with 68 valence electrons, emerge as magic clusters with an enhanced thermodynamic stability. The latter can be rationalized by the simple Jellium model. Geometric distortions from the Frank-Kasper tetrahedron of Ge16M having more or less than 68 valence electrons can be understood by a Jahn-Teller effect. Remarkably, DFT calculations reveal that both neutral Ge16Sc and Ge16Cu can be considered as superhalogens as their electron affinities (≥3.6 eV) exceed the value of the halogen atoms and even that of icosahedral Al13. A detailed view of the magnetic behavior of Ge16M0/- clusters shows that the magnetic moments of the atomic metals remain large even when they are quenched upon doping. When M goes from Sc to Zn, the total spin magnetic moment of Ge16M0/- increases steadily and reaches the maximum value of 3 μ B with M = Mn before decreasing towards the end of the first-row 3d block metals. Furthermore, the IR spectra of some tetrahedral Ge16M are also predicted.
Project description:The first nitridogermanates(III) Ca6 [Ge2 N6 ] and Sr6 [Ge2 N6 ] were synthesized from sodium flux and structurally characterized by powder and single crystal X-ray diffraction, respectively. They crystallize isostructurally to each other and homeotypic to Ca6 [Cr2 N6 ]H in space group R 3‾ . They feature unprecedented, mutually isolated, ethane-like [GeIII 2 N6 ]12- anions in a staggered conformation. The compounds are semiconductors according to resistivity measurements and electronic structure calculations, yielding band gaps of 1.1 eV for Ca6 [Ge2 N6 ] and 0.2 eV for Sr6 [Ge2 N6 ].