Project description:Uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanism underlying selective elimination of the paternal chromosomes during the early development of Hordeum vulgare × Hordeum bulbosum embryos. The following conclusions regarding the role of the centromere-specific histone H3 variant (CENH3) in the process of chromosome elimination were drawn: (i) centromere inactivity of H. bulbosum chromosomes triggers the mitosis-dependent process of uniparental chromosome elimination in unstable H. vulgare × H. bulbosum hybrids; (ii) centromeric loss of CENH3 protein rather than uniparental silencing of CENH3 genes causes centromere inactivity; (iii) in stable species combinations, cross-species incorporation of CENH3 occurs despite centromere-sequence differences, and not all CENH3 variants get incorporated into centromeres if multiple CENH3s are present in species combinations; and (iv) diploid barley species encode two CENH3 variants, the proteins of which are intermingled within centromeres throughout mitosis and meiosis.
Project description:Centromeres are epigenetically defined by CENP-A-containing chromatin and are essential for cell division. Previous studies suggest asymmetric inheritance of centromeric proteins upon stem cell division; however, the mechanism and implications of selective chromosome segregation remain unexplored. We show that Drosophila female germline stem cells (GSCs) and neuroblasts assemble centromeres after replication and before segregation. Specifically, CENP-A deposition is promoted by CYCLIN A, while excessive CENP-A deposition is prevented by CYCLIN B, through the HASPIN kinase. Furthermore, chromosomes inherited by GSCs incorporate more CENP-A, making stronger kinetochores that capture more spindle microtubules and bias segregation. Importantly, symmetric incorporation of CENP-A on sister chromatids via HASPIN knockdown or overexpression of CENP-A, either alone or together with its assembly factor CAL1, drives stem cell self-renewal. Finally, continued CENP-A assembly in differentiated cells is nonessential for egg development. Our work shows that centromere assembly epigenetically drives GSC maintenance and occurs before oocyte meiosis.
Project description:MicroRNAs (miRNAs) are small non-coding RNAs that function as negative gene expression regulators. Emerging evidence shows that, except for function in the cytoplasm, miRNAs are also present in the nucleus. However, the functional significance of nuclear miRNAs remains largely undetermined. By screening miRNA database, we have identified a subset of miRNA that functions as enhancer regulators. Here, we found a set of miRNAs show gene-activation function. We focused on miR-24-1 and found that this miRNA unconventionally activates gene transcription by targeting enhancers. Consistently, the activation was completely abolished when the enhancer sequence was deleted by TALEN. Furthermore, we found that miR-24-1 activates enhancer RNA (eRNA) expression, alters histone modification, and increases the enrichment of p300 and RNA Pol II at the enhancer locus. Our results demonstrate a novel mechanism of miRNA as an enhancer trigger.
Project description:In plants, post-transcriptional gene silencing (PTGS) is mediated by DICER-LIKE 1 (DCL1)-dependent microRNAs (miRNAs), which also trigger 21-nucleotide secondary short interfering RNAs (siRNAs) via RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), DCL4 and ARGONAUTE 1 (AGO1), whereas transcriptional gene silencing (TGS) of transposons is mediated by 24-nucleotide heterochromatic (het)siRNAs, RDR2, DCL3 and AGO4 (ref. 4). Transposons can also give rise to abundant 21-nucleotide 'epigenetically activated' small interfering RNAs (easiRNAs) in DECREASED DNA METHYLATION 1 (ddm1) and DNA METHYLTRANSFERASE 1 (met1) mutants, as well as in the vegetative nucleus of pollen grains and in dedifferentiated plant cell cultures. Here we show that easiRNAs in Arabidopsis thaliana resemble secondary siRNAs, in that thousands of transposon transcripts are specifically targeted by more than 50 miRNAs for cleavage and processing by RDR6. Loss of RDR6, DCL4 or DCL1 in a ddm1 background results in loss of 21-nucleotide easiRNAs and severe infertility, but 24-nucleotide hetsiRNAs are partially restored, supporting an antagonistic relationship between PTGS and TGS. Thus miRNA-directed easiRNA biogenesis is a latent mechanism that specifically targets transposon transcripts, but only when they are epigenetically reactivated during reprogramming of the germ line. This ancient recognition mechanism may have been retained both by transposons to evade long-term heterochromatic silencing and by their hosts for genome defence.
Project description:The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Although gene-environment interactions have been implicated in the etiology of several disorders, the impact of paternal and/or maternal metabolic syndrome on the clinical phenotypes of offspring and the underlying genetic and epigenetic contributors of NAFLD have not been fully explored. To this end, we used the liver-specific insulin receptor knockout (LIRKO) mouse, a unique nondietary model manifesting 3 hallmarks that confer high risk for the development of NAFLD: hyperglycemia, insulin resistance, and dyslipidemia. We report that parental metabolic syndrome epigenetically reprograms members of the TGF-β family, including neuronal regeneration-related protein (NREP) and growth differentiation factor 15 (GDF15). NREP and GDF15 modulate the expression of several genes involved in the regulation of hepatic lipid metabolism. In particular, NREP downregulation increases the protein abundance of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and ATP-citrate lyase (ACLY) in a TGF-β receptor/PI3K/protein kinase B-dependent manner, to regulate hepatic acetyl-CoA and cholesterol synthesis. Reduced hepatic expression of NREP in patients with NAFLD and substantial correlations between low serum NREP levels and the presence of steatosis and nonalcoholic steatohepatitis highlight the clinical translational relevance of our findings in the context of recent preclinical trials implicating ACLY in NAFLD progression.
Project description:In most eukaryotes, the centromere is epigenetically defined by nucleosomes that contain the histone H3 variant centromere protein A (CENP-A). Specific targeting of the CENP-A-loading chaperone to the centromere is vital for stable centromere propagation; however, the existence of ectopic centromeres (neocentromeres) indicates that this chaperone can function in different chromatin environments. The mechanism responsible for accommodating the CENP-A chaperone at novel chromatin regions is poorly understood. Here, we report the identification of transient, immature neocentromeres in Schizosaccharomyces pombe, which show reduced association with the CENP-A chaperone Scm3 attributable to persistence of the histone H2A variant H2A.Z. Following acquisition of adjacent heterochromatin or relocation of the immature neocentromeres to subtelomeric regions, H2A.Z was depleted and Scm3 was replenished, leading to subsequent stabilization of the neocentromeres. These findings provide novel insights into histone variant-mediated epigenetic control of neocentromere establishment. Comparison of chromosomal distributions of centromeric proteins and heterochromatin proteins between the NC survivors and their derivatives.
Project description:Reveal a specific set of proteins important to maintain centromere integrity, through quantitative PICh (Proteomics of Isolated Chromatin). Centromeric chromatin was pulled down through RNA probes annealing specifically to a 300bp-long conserved centromeric sequence.
Project description:In most eukaryotes, the centromere is epigenetically defined by nucleosomes that contain the histone H3 variant centromere protein A (CENP-A). Specific targeting of the CENP-A-loading chaperone to the centromere is vital for stable centromere propagation; however, the existence of ectopic centromeres (neocentromeres) indicates that this chaperone can function in different chromatin environments. The mechanism responsible for accommodating the CENP-A chaperone at novel chromatin regions is poorly understood. Here, we report the identification of transient, immature neocentromeres in Schizosaccharomyces pombe, which show reduced association with the CENP-A chaperone Scm3 attributable to persistence of the histone H2A variant H2A.Z. Following acquisition of adjacent heterochromatin or relocation of the immature neocentromeres to subtelomeric regions, H2A.Z was depleted and Scm3 was replenished, leading to subsequent stabilization of the neocentromeres. These findings provide novel insights into histone variant-mediated epigenetic control of neocentromere establishment.
Project description:Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history.