Ontology highlight
ABSTRACT: Background
Stephania yunnanensis H. S. Lo is widely used as an antipyretic, analgesic and anti-inflammatory herbal medicine in SouthWest China. In this study, we investigated the anti-inflammatory activity and mechanism of sinoacutine (sino), one of the primary components extracted from this plant. Methods
A RAW264.7 cell model was established using lipopolysaccharide (LPS) induced for estimation of cytokines in vitro, qPCR was used to estimate gene expression, western blot analysis was used to estimate protein level and investigate the regulation of NF- κB, JNK and MAPK signal pathway. In addition, an acute lung injury model was established to determine lung index and levels of influencing factors. Results
Using the RAW264.7 model, we found that sino reduced levels of nitric oxide (NO), tumour necrosis factor-α (TNF-α), interleukin (IL)-1β and prostaglandin E2 (PGE2) but increased levels of IL-6. qPCR analysis revealed that sino (50, 25 μg/ml) inhibited gene expression of nitric oxide synthase (iNOS). western blot analysis showed that sino significantly inhibited protein levels of both iNOS and COX-2. Further signalling pathway analysis validated that sino also inhibited phosphorylation of p65 in the NF-κB and c-Jun NH2 terminal kinase (JNK) signalling pathways but promoted the phosphorylation of extracellular signal regulated kinase (ERK) and p38 in the MAPK signalling pathway. In addition, in a mouse model induced by LPS, we determined that sino reduced the lung index and the levels of myeloperoxidase (MPO), NO, IL-6 and TNF-α in lung tissues and bronchoalveolar lavage fluid (BALF) in acute lung injury (ALI). Conclusion
Taken together, our results demonstrate that sino is a promising drug to alleviate LPS-induced inflammatory reactions. Supplementary Information
The online version contains supplementary material available at 10.1186/s12906-021-03458-0.
SUBMITTER: Zhao Y
PROVIDER: S-EPMC8605577 | biostudies-literature |
REPOSITORIES: biostudies-literature