Unknown

Dataset Information

0

Fatty acid synthase as a feasible biomarker for triple negative breast cancer stem cell subpopulation cultured on electrospun scaffolds.


ABSTRACT: There is no targeted therapy for triple negative breast cancer (TNBC), which presents an aggressive profile and poor prognosis. Recent studies noticed the feasibility of breast cancer stem cells (BCSCs), a small population responsible for tumor initiation and relapse, to become a novel target for TNBC treatments. However, new cell culture supports need to be standardized since traditional two-dimensional (2D) surfaces do not maintain the stemness state of cells. Hence, three-dimensional (3D) scaffolds represent an alternative to study in vitro cell behavior without inducing cell differentiation. In this work, electrospun polycaprolactone scaffolds were used to enrich BCSC subpopulation of MDA-MB-231 and MDA-MB-468 TNBC cells, confirmed by the upregulation of several stemness markers and the existence of an epithelial-to-mesenchymal transition within 3D culture. Moreover, 3D-cultured cells displayed a shift from MAPK to PI3K/AKT/mTOR signaling pathways, accompanied by an enhanced EGFR and HER2 activation, especially at early cell culture times. Lastly, the fatty acid synthase (FASN), a lipogenic enzyme overexpressed in several carcinomas, was found to be hyperactivated in stemness-enriched samples. Its pharmacological inhibition led to stemness diminishment, overcoming the BCSC expansion achieved in 3D culture. Therefore, FASN may represent a novel target for BCSC niche in TNBC samples.

SUBMITTER: Rabionet M 

PROVIDER: S-EPMC8606546 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6099607 | biostudies-literature
| S-EPMC4570735 | biostudies-literature
| S-EPMC5225208 | biostudies-literature
| S-EPMC4647231 | biostudies-literature
| S-EPMC5509008 | biostudies-other
| S-EPMC6888897 | biostudies-literature
2021-10-18 | E-MTAB-10886 | biostudies-arrayexpress
2019-02-01 | GSE122953 | GEO
| S-EPMC5502965 | biostudies-literature
| S-EPMC9265318 | biostudies-literature