Ontology highlight
ABSTRACT: Introduction
We aimed to explore the downregulation of the coiled-coil domain containing 80 (CCDC80) and its underlying molecular mechanisms in ovarian carcinoma (OVCA). Materials/Methods. Immunohistochemical staining was performed to confirm the expression status of CCDC80 protein. Combining the data from in-house tissue microarrays and high-throughput datasets, we identified the expression level of CCDC80 in OVCA. We utilized cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm and single-sample gene set enrichment analysis (ssGSEA) to explore the relationship between CCDC80 and the tumor microenvironment (TME) landscape in OVCA. Pathway enrichment, function annotation, and transcription factor (TFs) exploration were conducted to study the latent molecular mechanisms. Moreover, the cell line data in the Genomics of Drug Sensitivity in Cancer (GDSC) database was used to discover the relationship between CCDC80 and drug sensitivity. Results
An integrated standard mean difference (SMD) of −0.919 (95% CI: −1.515–0.324, P = 0.002) identified the downregulation of CCDC80 in OVCA based on 1048 samples, and the sROC (AUC = 0.76) showed a moderate discriminatory ability of CCDC80 in OVCA. The fraction of infiltrating naive B cells showed significant differences between the high- and low-CCDC80 expression groups. Also, CCDC80-related genes are enriched in the Ras signaling pathway and metabolic of lipid. Nuclear receptor subfamily three group C member 1 (NR3C1) may be an upstream TF of CCDC80, and CCDC80 may be related to the sensitivity of mitocycin C and nilotinib. Conclusion
CCDC80 was downregulated in OVCA and may play a role as a tumor suppressor in OVCA.
SUBMITTER: Liang Z
PROVIDER: S-EPMC8608537 | biostudies-literature |
REPOSITORIES: biostudies-literature