Rational Small Molecule Treatment for Genetic Epilepsies.
Ontology highlight
ABSTRACT: Genetic testing has yielded major advances in our understanding of the causes of epilepsy. Seizures remain resistant to treatment in a significant proportion of cases, particularly in severe, childhood-onset epilepsy, the patient population in which an underlying causative genetic variant is most likely to be identified. A genetic diagnosis can be explanatory as to etiology, and, in some cases, might suggest a therapeutic approach; yet, a clear path from genetic diagnosis to treatment remains unclear in most cases. Here, we discuss theoretical considerations behind the attempted use of small molecules for the treatment of genetic epilepsies, which is but one among various approaches currently under development. We explore a few salient examples and consider the future of the small molecule approach for genetic epilepsies. We conclude that significant additional work is required to understand how genetic variation leads to dysfunction of epilepsy-associated protein targets, and how this impacts the function of diverse subtypes of neurons embedded within distributed brain circuits to yield epilepsy and epilepsy-associated comorbidities. A syndrome- or even variant-specific approach may be required to achieve progress. Advances in the field will require improved methods for large-scale target validation, compound identification and optimization, and the development of accurate model systems that reflect the core features of human epilepsy syndromes, as well as novel approaches towards clinical trials of such compounds in small rare disease cohorts.
SUBMITTER: Goldberg EM
PROVIDER: S-EPMC8609069 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA