Project description:BackgroundAsymptomatic SARS-CoV-2 infection occurring in RT-PCR negative individuals represent a poorly characterized cohort with important infection control connotations. While household and community-based studies have evaluated seroprevalence of antibody and transmission dynamics in this group, workplace-based data is currently unavailable.MethodsA cohort study was carried out in July 2021, during and immediately following the peak of the 3rd wave of COVID-19 in Sri Lanka, prior to mass vaccination. A total of 92 unvaccinated individuals between the ages of 17-65 years were purposively sampled from an office and two factory settings. The selected cohort that had been exposed to RT-PCR positive cases in the workplace was tested RT-PCR negative. Serological samples collected six weeks post exposure were tested for anti-SARS-CoV-2 neutralizing antibody.ResultsThe seroprevalence for SARS-CoV-2 specific neutralizing antibodies in the overall cohort was 63.04% (58/92). Seroprevalences in the office setting, factory setting 1 and factory setting 2 were 69.2% (9/13), 55.7% (34/61) and 83.33% (15/18), respectively. Primary risk factor associated with seropositivity was face to face contact with no mask for > 15 min (p < 0.024, Odds Ratio (OR); 5.58, 95%CI;1.292- 25.65). Individuals with workspace exposure had significantly higher levels of neutralizing antibodies than those who did not (percentage neutralization in assay 63.3% (SD:21)vs 45.7% (SD:20), p = 0.0042), as did individuals who engaged socially without protective measures (62.4 (SD:21.6)% vs 49.7 (SD:21)%, p = 0.026).ConclusionThere was a high seroprevalence for SARS-CoV-2 specific neutralizing antibodies among RT-PCR negative contacts in workplace settings in Sri Lanka. Higher levels of transmission of SARS-CoV-2 infection than estimated based on RT-PCR positive contact data indicate need for targeted infection control measures in these settings during future outbreaks.
Project description:BackgroundReverse-transcription PCR (RT-PCR) assays are used to test for infection with the SARS-CoV-2 virus. RT-PCR tests are highly specific and the probability of false positives is low, but false negatives are possible depending on swab type and time since symptom onset.AimTo determine how the probability of obtaining a false-negative test in infected patients is affected by time since symptom onset and swab type.MethodsWe used generalised additive mixed models to analyse publicly available data from patients who received multiple RT-PCR tests and were identified as SARS-CoV-2 positive at least once.ResultsThe probability of a positive test decreased with time since symptom onset, with oropharyngeal (OP) samples less likely to yield a positive result than nasopharyngeal (NP) samples. The probability of incorrectly identifying an uninfected individual due to a false-negative test was considerably reduced if negative tests were repeated 24 hours later. For a small false-positive test probability (<0.5%), the true number of infected individuals was larger than the number of positive tests. For a higher false-positive test probability, the true number of infected individuals was smaller than the number of positive tests.ConclusionNP samples are more sensitive than OP samples. The later an infected individual is tested after symptom onset, the less likely they are to test positive. This has implications for identifying infected patients, contact tracing and discharging convalescing patients who are potentially still infectious.
Project description:ObjectiveLow viral load from patients infected with SARS-CoV-2 during infection late stage easily lead to false negative nucleic acid testing results, thus having great challenges to the prevention and control of the current pandemic. In present study, we mainly aimed to evaluate specimen types and specimen collection timepoint on the positive detection of 2019 novel coronavirus from patients at infection late stage based on RT-PCR testing.MethodsPaired nasopharyngeal swabs, nasal swabs, oropharyngeal swabs and anal swabs were collected from patients infected with SARS-CoV-2 during infection late stage before washing in the morning and afternoon on the same day. Then virus RNA was extracted and tested for 2019-nCoV identification by RT-PCR within 24 h.ResultsViral load was low at late infection stage. Specimens collected before washing in the morning would increase the detection ratio of 2019-nCoV. Detection ratio of nasopharyngeal swab [65 (95 % CI: 49.51-77.87) vs 42.5(95 % CI: 28.51-57.8)] or nasal swab [57.5 (95 % CI: 42.2-71.49) vs 35 (95 % CI: 22.13-50.49)] is higher not only than oropharyngeal swab[22.5 (95 % CI: 12.32-37.5) vs 7.5 (95 % CI: 2.58-19.86)], but also anal swab[2.5 (95 % CI: 0.44-12.88) vs 5 (95 % CI: 1.38-16.5)].ConclusionsIn summary, our research discovers that nasopharyngeal or nasal swab collected before washing in the morning might be more suitable for detecting of large-scale specimens from patients infected with low SARS-CoV-2 load during infection late stage. Those results could facilitate other laboratories in collecting appropriate specimens for improving detection of SARS-CoV-2 from patients during infection late stage as well as initially screening.
Project description:BackgroundMolecular-based tests used to identify symptomatic or asymptomatic patients infected by SARS-CoV-2 are characterized by high specificity but scarce sensitivity, generating false-negative results. We aimed to estimate, through a systematic review of the literature, the rate of RT-PCR false negatives at initial testing for COVID-19.MethodsWe systematically searched Pubmed, Embase and CENTRAL as well as a list of reference literature. We included observational studies that collected samples from respiratory tract to detect SARS-CoV-2 RNA using RT-PCR, reporting the number of false-negative subjects and the number of final patients with a COVID-19 diagnosis. Reported rates of false negatives were pooled in a meta-analysis as appropriate. We assessed the risk of bias of included studies and graded the quality of evidence according to the GRADE method. All information in this article is current up to February 2021.ResultsWe included 32 studies, enrolling more than 18,000 patients infected by SARS-CoV-2. The overall false-negative rate was 0.12 (95%CI from 0.10 to 0.14) with very low certainty of evidence. The impact of misdiagnoses was estimated according to disease prevalence; a range between 2 and 58/1,000 subjects could be misdiagnosed with a disease prevalence of 10%, increasing to 290/1,000 misdiagnosed subjects with a disease prevalence of 50%.ConclusionsThis systematic review showed that up to 58% of COVID-19 patients may have initial false-negative RT-PCR results, suggesting the need to implement a correct diagnostic strategy to correctly identify suspected cases, thereby reducing false-negative results and decreasing the disease burden among the population.
Project description:ObjectiveTo evaluate the efficacy of sample pooling compared to the individual analysis for the diagnosis of coronavirus disease 2019 (COVID-19) by using different commercial platforms for nucleic acid extraction and amplification.MethodsA total of 3519 nasopharyngeal samples received at nine Spanish clinical microbiology laboratories were processed individually and in pools (342 pools of ten samples and 11 pools of nine samples) according to the existing methodology in place at each centre.ResultsWe found that 253 pools (2519 samples) were negative and 99 pools (990 samples) were positive; with 241 positive samples (6.85%), our pooling strategy would have saved 2167 PCR tests. For 29 pools (made out of 290 samples), we found discordant results when compared to their correspondent individual samples, as follows: in 22 of 29 pools (28 samples), minor discordances were found; for seven pools (7 samples), we found major discordances. Sensitivity, specificity and positive and negative predictive values for pooling were 97.10% (95% confidence interval (CI), 94.11-98.82), 100%, 100% and 99.79% (95% CI, 99.56-99.90) respectively; accuracy was 99.80% (95% CI, 99.59-99.92), and the kappa concordant coefficient was 0.984. The dilution of samples in our pooling strategy resulted in a median loss of 2.87 (95% CI, 2.46-3.28) cycle threshold (Ct) for E gene, 3.36 (95% CI, 2.89-3.85) Ct for the RdRP gene and 2.99 (95% CI, 2.56-3.43) Ct for the N gene.ConclusionsWe found a high efficiency of pooling strategies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA testing across different RNA extraction and amplification platforms, with excellent performance in terms of sensitivity, specificity and positive and negative predictive values.
Project description:Bivalve shellfish are readily contaminated by human pathogens present in waters impacted by municipal sewage, and the detection of SARS-CoV-2 in feces of infected patients and in wastewater has drawn attention to the possible presence of the virus in bivalves. The aim of this study was to collect data on SARS-CoV-2 prevalence in bivalve mollusks from harvesting areas of Campania region. A total of 179 samples were collected between September 2019 and April 2021 and were tested using droplet digital RT-PCR (dd RT-PCR) and real-time RT-PCR. Combining results obtained with different assays, SARS-CoV-2 presence was detected in 27/179 (15.1%) of samples. A median viral concentration of 1.1 × 102 and 1.4 × 102 g.c./g was obtained using either Orf1b nsp14 or RdRp/gene E, respectively. Positive results were unevenly distributed among harvesting areas and over time, positive samples being more frequent after January 2021. Partial sequencing of the spike region was achieved for five samples, one of which displaying mutations characteristic of the Alpha variant (lineage B.1.1.7). This study confirms that bivalve mollusks may bioaccumulate SARS-CoV-2 to detectable levels and that they may represent a valuable approach to track SARS-CoV-2 in water bodies and to monitor outbreak trends and viral diversity.
Project description:Convalescent sera of RT-PCR SARS-CoV-2 confirmed hospitalised patients were tested on the protein array to profile IgG, IgM, and IgA antibody levels against human coronaviruses.
Project description:Fast, accurate, and reliable diagnostic tests are critical for controlling the spread of the coronavirus disease 2019 (COVID-19) associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The current gold standard for testing is real-time PCR; however, during the current pandemic, supplies of testing kits and reagents have been limited. We report the validation of a rapid (30 minutes), user-friendly, and accurate microchip real-time PCR assay for detection of SARS-CoV-2 from nasopharyngeal swab RNA extracts. Microchips preloaded with COVID-19 primers and probes for the N gene accommodate 1.2-μL reaction volumes, lowering the required reagents by 10-fold compared with tube-based real-time PCR. We validated our assay using contrived reference samples and 21 clinical samples from patients in Canada, determining a limit of detection of 1 copy per reaction. The microchip real-time PCR provides a significantly lower resource alternative to the Centers for Disease Control and Prevention-approved real-time RT-PCR assays with comparable sensitivity, showing 100% positive and negative predictive agreement of clinical samples.