Project description:The inhalation, ingestion, and body absorption of noxious gases lead to severe tissue damage, ophthalmological issues, and neurodegenerative disorders; death may even occur when recognized too late. In particular, methanol gas present in traces can cause blindness, non-reversible organ failure, and even death. Even though ample materials are available for the detection of methanol in other alcoholic analogs at ppm level, their scope is very limited because of the use of either toxic or expensive raw materials or tedious fabrication procedures. In this paper, we report on a simple synthesis of fluorescent amphiphiles achieved using a starting material derived from renewable resources, this material being methyl ricinoleate in good yields. The newly synthesized bio-based amphiphiles were prone to form a gel in a broad range of solvents. The morphology of the gel and the molecular-level interaction involved in the self-assembly process were thoroughly investigated. Rheological studies were carried out to probe the stability, thermal processability, and thixotropic behavior. In order to evaluate the potential application of the self-assembled gel in the field of sensors, we performed sensor measurements. Interestingly, the twisted fibers derived from the molecular assembly could be able to display a stable and selective response towards methanol. We believe that the bottom-up assembled system holds great promise in the environmental, healthcare, medicine, and biological fields.
Project description:Mechanical cues including stretch, compression, and shear stress play a critical role in regulating the behavior of many cell types, particularly those that experience substantial mechanical stress within tissues. Devices that impart mechanical stimulation to cells in vitro have been instrumental in helping to develop a better understanding of how cells respond to mechanical forces. However, these devices often have constraints, such as cost and limited functional capabilities, that restrict their use in research or educational environments. Here, we describe a low-cost method to fabricate a uniaxial cell stretcher that would enable widespread use and facilitate engineering design and mechanobiology education for undergraduate students. The device is capable of producing consistent and reliable strain profiles through the use of a servomotor, gear, and gear rack system. The servomotor can be programmed to output various waveforms at specific frequencies and stretch amplitudes by controlling the degree of rotation, speed, and acceleration of the servogear. In addition, the stretchable membranes are easy to fabricate and can be customized, allowing for greater flexibility in culture well size. We used the custom-built stretching device to uniaxially strain macrophages and cardiomyocytes, and found that both cell types displayed functional and cell shape changes that were consistent with the previous studies using commercially available systems. Overall, this uniaxial cell stretcher provides a more cost-effective alternative to study the effects of mechanical stretch on cells, and can therefore, be widely used in research and educational environments to broaden the study and pedagogy of cell mechanobiology.
Project description:Here, we propose a Pt/HfO2/TaOx/TiN artificial synaptic device that is an excellent candidate for artificial synapses. First, XPS analysis is conducted to provide the dielectric (HfO2/TaOx/TiN) information deposited by DC sputtering and atomic layer deposition (ALD). The self-rectifying resistive switching characteristics are achieved by the asymmetric device stack, which is an advantage of the current suppression in the crossbar array structure. The results show that the programmed data are lost over time and that the decay rate, which is verified from the retention test, can be adjusted by controlling the compliance current (CC). Based on these properties, we emulate bio-synaptic characteristics, such as short-term plasticity (STP), long-term plasticity (LTP), and paired-pulse facilitation (PPF), in the self-rectifying I-V characteristics of the Pt/HfO2/TaOx/TiN bilayer memristor device. The PPF characteristics are mimicked by replacing the bio-stimulation with the interval time of paired pulse inputs. The typical potentiation and depression are also implemented by optimizing the set and reset pulse. Finally, we demonstrate the natural depression by varying the interval time between pulse inputs.
Project description:Optical control of the heart muscle is a promising strategy for cardiology because it is more specific than traditional electrical stimulation, and allows a higher temporal resolution than pharmacological interventions. Anion channelrhodopsins (ACRs) from cryptophyte algae expressed in cultured neonatal rat ventricular cardiomyocytes produced inhibitory currents at less than one-thousandth of the light intensity required by previously available optogenetic tools, such as the proton pump archaerhodopsin-3 (Arch). Because of their greater photocurrents, ACRs permitted complete inhibition of cardiomyocyte electrical activity under conditions in which Arch was inefficient. Most importantly, ACR expression allowed precisely controlled shortening of the action potential duration by switching on the light during its repolarization phase, which was not possible with previously used optogenetic tools. Optical shortening of cardiac action potentials may benefit pathophysiology research and the development of optogenetic treatments for cardiac disorders such as the long QT syndrome.
Project description:After the recent cloning of light-sensitive ion channels and their expression in mammalian cells, a new field, optogenetics, emerged in neuroscience, allowing for precise perturbations of neural circuits by light. However, functionality of optogenetic tools has not been fully explored outside neuroscience, and a nonviral, nonembryogenesis-based strategy for optogenetics has not been shown before.We demonstrate the utility of optogenetics to cardiac muscle by a tandem cell unit (TCU) strategy, in which nonexcitable cells carry exogenous light-sensitive ion channels, and, when electrically coupled to cardiomyocytes, produce optically excitable heart tissue. A stable channelrhodopsin2 (ChR2)-expressing cell line was developed, characterized, and used as a cell delivery system. The TCU strategy was validated in vitro in cell pairs with adult canine myocytes (for a wide range of coupling strengths) and in cardiac syncytium with neonatal rat cardiomyocytes. For the first time, we combined optical excitation and optical imaging to capture light-triggered muscle contractions and high-resolution propagation maps of light-triggered electric waves, found to be quantitatively indistinguishable from electrically triggered waves.Our results demonstrate feasibility to control excitation and contraction in cardiac muscle by light, using the TCU approach. Optical pacing in this case uses less energy, offers superior spatiotemporal control and remote access and can serve not only as an elegant tool in arrhythmia research but may form the basis for a new generation of light-driven cardiac pacemakers and muscle actuators. The TCU strategy is extendable to (nonviral) stem cell therapy and is directly relevant to in vivo applications.
Project description:All-trans-Retinal (ATR) is a photosensitizer, serving as the chromophore for depolarizing and hyperpolarizing light-sensitive ion channels and pumps (opsins), recently employed as fast optical actuators. In mammalian optogenetic applications (in brain and heart), endogenous ATR availability is not considered a limiting factor, yet it is unclear how ATR modulation may affect the response to optical stimulation. We hypothesized that exogenous ATR may improve light responsiveness of cardiac cells modified by Channelrhodopsin2 (ChR2), hence lowering the optical pacing energy. In virally-transduced (Ad-ChR2(H134R)-eYFP) light-sensitive cardiac syncytium in vitro, ATR supplements ≤2 μM improved cardiomyocyte viability and augmented ChR2 membrane expression several-fold, while >4 μM was toxic. Employing integrated optical actuation (470 nm) and optical mapping, we found that 1-2 μM ATR dramatically reduced optical pacing energy (over 30 times) to several μW/mm(2), lowest values reported to date, but also caused action potential prolongation, minor changes in calcium transients and no change in conduction. Theoretical analysis helped explain ATR-caused reduction of optical excitation threshold in cardiomyocytes. We conclude that cardiomyocytes operate at non-saturating retinal levels, and carefully-dosed exogenous ATR can enhance the performance of ChR2 in cardiac cells and yield energy benefits over orders of magnitude for optogenetic stimulation.
Project description:Continuous, battery-free operation of sensor nodes requires ultra-low-power sensing and data-logging techniques. Here we report that by directly coupling a sensor/transducer signal into globally asymptotically stable monotonic dynamical systems based on Fowler-Nordheim quantum tunneling, one can achieve self-powered sensing at an energy budget that is currently unachievable using conventional energy harvesting methods. The proposed device uses a differential architecture to compensate for environmental variations and the device can retain sensed information for durations ranging from hours to days. With a theoretical operating energy budget less than 10 attojoules, we demonstrate that when integrated with a miniature piezoelectric transducer the proposed sensor-data-logger can measure cumulative "action" due to ambient mechanical acceleration without any additional external power.
Project description:Rotating spiral waves in the heart are associated with life-threatening cardiac arrhythmias such as ventricular tachycardia and fibrillation. These arrhythmias are treated by a process called defibrillation, which forces electrical resynchronization of the heart tissue by delivering a single global high-voltage shock directly to the heart. This method leads to immediate termination of spiral waves. However, this may not be the only mechanism underlying successful defibrillation, as certain scenarios have also been reported, where the arrhythmia terminated slowly, over a finite period of time. Here, we investigate the slow termination dynamics of an arrhythmia in optogenetically modified murine cardiac tissue both in silico and ex vivo during global illumination at low light intensities. Optical imaging of an intact mouse heart during a ventricular arrhythmia shows slow termination of the arrhythmia, which is due to action potential prolongation observed during the last rotation of the wave. Our numerical studies show that when the core of a spiral is illuminated, it begins to expand, pushing the spiral arm towards the inexcitable boundary of the domain, leading to termination of the spiral wave. We believe that these fundamental findings lead to a better understanding of arrhythmia dynamics during slow termination, which in turn has implications for the improvement and development of new cardiac defibrillation techniques.
Project description:Gene expression was compared between 7-day old seedlings expressing two effector modules of an oxygen sensor device,consisting of the Saccharomyces cerevisiae Gal4 activation domain (AD) fused to the human HIF-CODD and the Gal4 DNA binding domain (BD) fused to the human pVHL, and seedlings expressing the previously described effector modules in addition to the sensory module constituted by the human PHD3 gene under control of constitutive promoters
Project description:In this paper, we present a transparent mechanical stimulation device capable of uniaxial stimulation, which is compatible with standard bioanalytical methods used in cellular mechanobiology. We validate the functionality of the uniaxial stimulation system using human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs). The pneumatically controlled device is fabricated from polydimethylsiloxane (PDMS) and provides uniaxial strain and superior optical performance compatible with standard inverted microscopy techniques used for bioanalytics (e.g., fluorescence microscopy and calcium imaging). Therefore, it allows for a continuous investigation of the cell state during stretching experiments. The paper introduces design and fabrication of the device, characterizes the mechanical performance of the device and demonstrates the compatibility with standard bioanalytical analysis tools. Imaging modalities, such as high-resolution live cell phase contrast imaging and video recordings, fluorescent imaging and calcium imaging are possible to perform in the device. Utilizing the different imaging modalities and proposed stretching device, we demonstrate the capability of the device for extensive further studies of hiPSC-CMs. We also demonstrate that sarcomere structures of hiPSC-CMs organize and orient perpendicular to uniaxial strain axis and thus express more maturated nature of cardiomyocytes.