Project description:High levels of homocysteine are reported as a risk factor for Alzheimer's disease (AD). Correspondingly, inborn hyperhomocysteinemia is associated with an increased predisposition to the development of dementia in later stages of life. Yet, the mechanistic link between homocysteine accumulation and the pathological neurodegenerative processes is still elusive. Furthermore, despite the clear association between protein aggregation and AD, attempts to develop therapy that specifically targets this process have not been successful. It is envisioned that the failure in the development of efficacious therapeutic intervention may lie in the metabolomic state of affected individuals. We recently demonstrated the ability of metabolites to self-assemble and cross-seed the aggregation of pathological proteins, suggesting a role for metabolite structures in the initiation of neurodegenerative diseases. Here, we provide a report of homocysteine crystal structure and self-assembly into amyloid-like toxic fibrils, their inhibition by polyphenols, and their ability to seed the aggregation of the AD-associated β-amyloid polypeptide. A yeast model of hyperhomocysteinemia indicates a toxic effect, correlated with increased intracellular amyloid staining that could be rescued by polyphenol treatment. Analysis of AD mouse model brain sections indicates the presence of homocysteine assemblies and the interplay between β-amyloid and homocysteine. This work implies a molecular basis for the association between homocysteine accumulation and AD pathology, potentially leading to a paradigm shift in the understanding of AD initial pathological processes.
Project description:Self-assembly of a modified tris(2-pyridylmethyl)amine TPMA ligand, zinc(ii) or cobalt(ii) ions, and amino acids have been used effectively as stereo dynamic optical probes for the determination of the enantiomeric excess of free amino acids either using Electronic or Vibrational Circular Dichroism (CD and VCD). Herein, we report the mechanistic and stereochemical study of the self-assembly process which reveals a complex equilibrium in solution where even small variations in the experimental conditions can profoundly affect the final products of the reaction. In particular, variation on the metal stoichiometry switch give rises to an entirely enantio narcissistic self-assembly of the structure.
Project description:Natural systems exhibit diverse behavior generated by complex interactions between their constituent parts. To characterize these interactions, we introduce Convergent Cross Sorting (CCS), a novel algorithm based on convergent cross mapping (CCM) for estimating dynamic coupling from time series data. CCS extends CCM by using the relative ranking of distances within state-space reconstructions to improve the prior methods' performance at identifying the existence, relative strength, and directionality of coupling across a wide range of signal and noise characteristics. In particular, relative to CCM, CCS has a large performance advantage when analyzing very short time series data and data from continuous dynamical systems with synchronous behavior. This advantage allows CCS to better uncover the temporal and directional relationships within systems that undergo frequent and short-lived switches in dynamics, such as neural systems. In this paper, we validate CCS on simulated data and demonstrate its applicability to electrophysiological recordings from interacting brain regions.
Project description:Here we demonstrate how the hydrogen-bonding ability of a BINOL-based dialdehyde subcomponent dictated the stereochemical outcome of its subsequent self-assembly into one diastereomeric helicate form when bearing free hydroxy groups, and another in the case of its methylated congener. The presence of methyl groups also altered the self-sorting behavior when mixed with another, short linear dialdehyde subcomponent, switching the outcome of the system from narcissistic to integrative self-sorting. In all cases, the axial chirality of the BINOL building block also dictated helicate metal center handedness during stereospecific self-assembly. A new family of stereochemically pure heteroleptic helicates were thus prepared using the new knowledge gained. We also found that switching from FeII to ZnII, or the incorporation of a longer linear ligand, favored heteroleptic structure formation.
Project description:Self-assembling macrobicyclic cryptand-type organic cages display remarkable self-sorting behavior with efficient component selection. Making use of the dynamic covalent chemistry approach, eight different cages were synthesized by condensation of tris(2-aminopropyl)amine with structurally different dialdehydes. A series of self-sorting experiments were first carried out on simple dynamic covalent libraries. They reveal the influence of different structural features of the aldehyde components on the condensation with two triamine capping units. Subsequently, self-sorting experiments were performed on more complex systems involving several dialdehyde building blocks. Altogether, the results obtained describe the effect of the presence of a heteroatom, of electrostatic interactions, of delocalization and of the flexibility/stiffness of the propensity of a component to undergo formation of a macrobicyclic cage. In the presence of a catalytic amount of acid, the macrobicyclic structure undergoes dynamic component exchange.
Project description:In contrast to self-assembly in solution systems, the construction of well-defined assemblies in the solid state has long been identified as a challenging task. Herein, we report the formation of tweezers-shaped molecules into various assemblies through a solid-state self-assembly strategy. The relatively flexible molecular tweezers undergo exclusive and quantitative assembly into either cyclic hexamers or a porous network through classical recrystallization or the exposure of powders to solvent vapor, despite the fact that they form only dimers in solution. The cyclic hexamers have high thermal stability and exhibit moderate solid-state fluorescence. The formation of heterologous assemblies consisting of different tweezers allows for tuning these solid-state properties of the cyclic hexamer. Furthermore, (trimethylsilyl)ethynyl-substituted tweezers demonstrate solvent-vapor-induced dynamic interconversion between the cyclic hexamer and a pseudocyclic dimer in the solid state. This assembly behavior, which has been studied extensively in solution-based supramolecular chemistry, had not been accomplished in the solid state so far.
Project description:Short peptides are poorly immunogenic when delivered sublingually - under the tongue. Nanomaterial delivery of peptides could be utilized to improve immunogenicity towards designed sublingual vaccines, but nanomaterials have not been widely successful in sublingual vaccines owing to the challenges of transport through the sublingual mucosa. Here, we report that the sublingual immunogenicity of peptides is negligible, even in the presence of sublingual adjuvants or when PEGylated, but can be dramatically enhanced by assembly into supramolecular polymer-peptide nanofibers bearing low-molecular weight PEG, optimally between 2000 and 3000 Da. Neither PEGylation nor a sublingual adjuvant were capable of rendering peptides immunogenic without assembly into nanofibers. We found that PEG decreased nanofiber interactions with mucin and promoted longer residence time at the sublingual immunization site. Parallel investigations with shortened nanofibers indicated that the size of the assemblies had a surprisingly negligible influence over sublingual immunogenicity. In mice, optimized formulations were capable of raising strong and highly durable systemic antibody responses, antibodies in the upper respiratory and reproductive tracts, and systemic antigen-specific T-cell responses. These nanofiber-based sublingual vaccines were effective with both protein and nucleotide adjuvants and raised responses against both a model peptide epitope and a peptide epitope from M. tuberculosis. Further, PASylation (modification of nanofibers with peptide sequences rich in Pro, Ala, and Ser) could be substituted for PEGylation to also achieve sublingual immunogenicity. These findings indicated that surface properties supersede nanomaterial size in modulating sublingual nanomaterial immunogenicity, having important implications for the design of synthetic sublingual vaccines.
Project description:Self-assembled capsules are nanoscale structures made up of multiple synthetic subunits held together by weak intermolecular forces. They act as host structures that can completely surround small molecule guests of the appropriate size, shape and chemical surface. Like their biological counterparts, multimeric enzymes and receptors, the subunits of the capsules are generally identical, and lead to homomeric assemblies of high symmetry. In both biological and synthetic systems small variations in structures are tolerated and lead to heteromeric assemblies with slightly different recognition properties. The synthetic capsules are dynamic, with lifetimes from milliseconds to hours, and allow the direct spectroscopic observation of smaller molecules inside, under ambient conditions at equilibrium in solution. We report here the assembly of hybrid capsules made up of 2 very different structures, both capable of forming their own homomeric capsules through hydrogen bonding. These hybrids exhibit host properties that differ markedly from the parent capsules, and suggest that other capsules may emerge from seemingly unrelated modules that have curved surfaces and are rich in hydrogen bonding capabilities.
Project description:Stimuli-responsive supramolecular assemblies controlling macroscopic transformations with high structural fluidity, i.e., foam properties, have attractive prospects for applications in soft materials ranging from biomedical systems to industrial processes, e.g., textile coloring. However, identifying the key processes for the amplification of molecular motion to a macroscopic level response is of fundamental importance for exerting the full potential of macroscopic structural transformations by external stimuli. Herein, we demonstrate the control of dynamic supramolecular assemblies in aqueous media and as a consequence their macroscopic foam properties, e.g., foamability and foam stability, by large geometrical transformations of dual light/heat stimuli-responsive molecular motor amphiphiles. Detailed insight into the reversible photoisomerization and thermal helix inversion at the molecular level, supramolecular assembly transformations at the microscopic level, and the stimuli-responsive foam properties at the macroscopic level, as determined by UV-vis absorption and NMR spectroscopies, electron microscopy, and foamability and in situ surface tension measurements, is presented. By selective use of external stimuli, e.g., light or heat, multiple states and properties of macroscopic foams can be controlled with very dilute aqueous solutions of the motor amphiphiles (0.2 weight%), demonstrating the potential of multiple stimuli-responsive supramolecular systems based on an identical molecular amphiphile and providing opportunities for future soft materials.
Project description:We report the synthesis of molecular prime and composite knots by social self-sorting of 2,6-pyridinedicarboxamide (pdc) ligands of differing topicity and stereochemistry. Upon mixing achiral monotopic and ditopic pdc-ligand strands in a 1:1:1 ratio with Lu(III), a well-defined heteromeric complex featuring one of each ligand strand and the metal ion is selectively formed. Introducing point-chiral centers into the ligands leads to single-sense helical stereochemistry of the resulting coordination complex. Covalent capture of the entangled structure by ring-closing olefin metathesis then gives a socially self-sorted trefoil knot of single topological handedness. In a related manner, a heteromeric molecular granny knot (a six-crossing composite knot featuring two trefoil tangles of the same handedness) was assembled from social self-sorting of ditopic and tetratopic multi-pdc strands. A molecular square knot (a six-crossing composite knot of two trefoil tangles of opposite handedness) was assembled by social self-sorting of a ditopic pdc strand with four (S)-centers and a tetratopic strand with two (S)- and six (R)-centers. Each of the entangled structures was characterized by 1H and 13C NMR spectroscopy, mass spectrometry, and circular dichroism spectroscopy. The precise control of composition and topological chirality through social self-sorting enables the rapid assembly of well-defined sequences of entanglements for molecular knots.