Project description:BackgroundCongenital dyserythropoietic anemia type II (CDAII), the most common form of CDA, is an autosomal recessive condition. CDAII diagnosis is based on invasive, expensive, and time consuming tests that are available only in specialized laboratories. The recent identification of SEC23B mutations as the cause of CDAII opens new possibilities for the molecular diagnosis of the disease. The aim of this study was to characterize molecular genomic SEC23B defects in 16 unrelated patients affected by CDAII and correlate the identified genetic alterations with SEC23B transcript and protein levels in erythroid precursors.MethodsSEC23B was sequenced in 16 patients, their relatives and 100 control participants. SEC23B transcript level were studied by quantitative PCR (qPCR) in peripheral erythroid precursors and lymphocytes from the patients and healthy control participants. Sec23B protein content was analyzed by immunoblotting in samples of erythroblast cells from CDAII patients and healthy controls.ResultsAll of the investigated cases carried SEC23B mutations on both alleles, with the exception of two patients in which a single heterozygous mutation was found. We identified 15 different SEC23B mutations, of which four represent novel mutations: p.Gln214Stop, p.Thr485Ala, p.Val637Gly, and p.Ser727Phe. The CDAII patients exhibited a 40-60% decrease of SEC23B mRNA levels in erythroid precursors when compared with the corresponding cell type from healthy participants. The largest decrease was observed in compound heterozygote patients with missense/nonsense mutations. In three patients, Sec23B protein levels were evaluated in erythroid precursors and found to be strictly correlated with the reduction observed at the transcript level. We also demonstrate that Sec23B mRNA expression levels in lymphocytes and erythroblasts are similar.ConclusionsIn this study, we identified four novel SEC23B mutations associated with CDAII disease. We also demonstrate that the genetic alteration results in a significant decrease of SEC23B transcript in erythroid precursors. Similar down-regulation was observed in peripheral lymphocytes, suggesting that the use of these cells might be sufficient in the identification of Sec23B gene alterations. Finally, we demonstrate that decreased Sec23B protein levels in erythroid precursors correlate with down-regulation of the SEC23B mRNA transcript.
Project description:Congenital dyserythropoietic anemia type II, a recessive disorder of erythroid differentiation, is due to mutations in SEC23B, a component of the core trafficking machinery COPII. In no case homozygosity or compound heterozygosity for nonsense mutation(s) was found. This study represents the first description of molecular mechanisms underlying SEC23B hypomorphic genotypes by the analysis of five novel mutations. Our findings suggest that reduction of SEC23B gene expression is not associated with CDA II severe clinical presentation; conversely, the combination of a hypomorphic allele with one functionally altered results in more severe phenotypes. We propose a mechanism of compensation SEC23A-mediated which justifies these observations.
Project description:Congenital dyserythropoietic anemia type II (CDA II) is an inherited autosomal recessive blood disorder which belongs to the wide group of ineffective erythropoiesis conditions. It is characterized by mild to severe normocytic anemia, jaundice, and splenomegaly owing to the hemolytic component. This often leads to liver iron overload and gallstones. CDA II is caused by biallelic mutations in the SEC23B gene. In this study, we report 9 new CDA II cases and identify 16 pathogenic variants, 6 of which are novel. The newly reported variants in SEC23B include three missenses (p.Thr445Arg, p.Tyr579Cys, and p.Arg701His), one frameshift (p.Asp693GlyfsTer2), and two splicing variants (c.1512-2A>G, and the complex intronic variant c.1512-3delinsTT linked to c.1512-16_1512-7delACTCTGGAAT in the same allele). Computational analyses of the missense variants indicated a loss of key residue interactions within the beta sheet and the helical and gelsolin domains, respectively. Analysis of SEC23B protein levels done in patient-derived lymphoblastoid cell lines (LCLs) showed a significant decrease in SEC23B protein expression, in the absence of SEC23A compensation. Reduced SEC23B mRNA expression was only detected in two probands carrying nonsense and frameshift variants; the remaining patients showed either higher gene expression levels or no expression changes at all. The skipping of exons 13 and 14 in the newly reported complex variant c.1512-3delinsTT/c.1512-16_1512-7delACTCTGGAAT results in a shorter protein isoform, as assessed by RT-PCR followed by Sanger sequencing. In this work, we summarize a comprehensive spectrum of SEC23B variants, describe nine new CDA II cases accounting for six previously unreported variants, and discuss innovative therapeutic approaches for CDA II.
Project description:SEC23B gene encodes an essential component of the coat protein complex II (COPII)-coated vesicles. Mutations in this gene cause the vast majority the congenital dyserythropoietic anemia Type II (CDA II), a rare disorder resulting from impaired erythropoiesis. Here, we investigated 28 CDA II patients from 21 unrelated families enrolled in the CDA II International Registry. Overall, we found 19 novel variants [c.2270 A>C p.H757P; c.2149-2 A>G; c.1109+1 G>A; c.387(delG) p.L129LfsX26; c.1858 A>G p.M620V; c.1832 G>C p.R611P; c.1735 T>A p.Y579N; c.1254 T>G p.I418M; c.1015 C>T p.R339X; c.1603 C>T p.R535X; c.1654 C>T p.L552F; c.1307 C>T p.S436L; c.279+3 A>G; c. 2150(delC) p.A717VfsX7; c.1733 T>C p.L578P; c.1109+5 G>A; c.221+31 A>G; c.367 C>T p.R123X; c.1857_1859delCAT; p.I619del] in the homozygous or the compound heterozygous state. Homozygosity or compound heterozygosity for two nonsense mutations was never found. In four cases the sequencing analysis has failed to find two mutations. To discuss the putative functional consequences of missense mutations, computational analysis and sequence alignment were performed. Our data underscore the high allelic heterogeneity of CDA II, as the most of SEC23B variations are inherited as private mutations. In this mutation update, we also provided a tool to improve and facilitate the molecular diagnosis of CDA II by defining the frequency of mutations in each exon.
Project description:Congenital dyserythropoietic anemias (CDAs) are characterized by ineffective erythropoiesis and distinctive erythroblast abnormalities; the diagnosis is often missed or delayed due to significant phenotypic heterogeneity. We established the CDA Registry of North America (CDAR) to study the natural history of CDA and create a biorepository to investigate the pathobiology of this heterogeneous disease. Seven of 47 patients enrolled so far in CDAR have CDA-I due to biallelic CDAN1 mutations. They all presented with perinatal anemia and required transfusions during infancy. Anemia spontaneously improved during infancy in three patients; two became transfusion-independent rapidly after starting interferon-α2; and two remain transfusion-dependent at last follow-up at ages 5 and 30 y.o. One of the transfusion-dependent patients underwent splenectomy at 11 y.o due to misdiagnosis and returned to medical attention at 27 y.o with severe hemolytic anemia and pulmonary hypertension. All patients developed iron overload even without transfusions; four were treated with chelation. Genetic testing allowed for more rapid and accurate diagnosis; the median age of confirmed diagnosis in our cohort was 3 y.o compared to 17.3 y.o historically. In conclusion, CDAR provides an organized research network for multidisciplinary clinical and research collaboration to conduct natural history and biologic studies in CDA.
Project description:The most frequent form of congenital dyserythropoietic anemia is the type II form. Recently it was shown that the vast majority of patients with congenital dyserythropoietic anemia type II carry mutations in the SEC23B gene. Here we established the molecular basis of 42 cases of congenital dyserythropoietic anemia type II and attempted to define a genotype-phenotype relationship.SEC23B gene sequencing analysis was performed to assess the diversity and incidence of each mutation in 42 patients with congenital dyserythropoietic anemia type II (25 described exclusively in this work), from the Italian and the French Registries, and the relationship of these mutations with the clinical presentation. To this purpose, we divided the patients into two groups: (i) patients with two missense mutations and (ii) patients with one nonsense and one missense mutation.We found 22 mutations of uneven frequency, including seven novel mutations. Compound heterozygosity for a missense and a nonsense mutation tended to produce a more severe clinical presentation, a lower reticulocyte count, a higher serum ferritin level, and, in some cases, more pronounced transfusion needs, than homozygosity or compound heterozygosity for two missense mutations. Homozygosity or compound heterozygosity for two nonsense mutations was never found.This study allowed us to determine the most frequent mutations in patients with congenital dyserythropoietic anemia type II. Correlations between the mutations and various biological parameters suggested that the association of one missense mutation and one nonsense mutation was significantly more deleterious that the association of two missense mutations. However, there was an overlap between the two categories.
Project description:Congenital dyserythropoietic anemias (CDAs) are displayed by ineffective erythropoiesis. The wide variety of phenotypes observed in CDA patients makes differential diagnosis difficult; identification of the genetic variants is crucial in clinical management. We report the fifth case of a patient with unclassified CDAs, after genetic study, with CDA type IV.
Project description:Congenital dyserythropoietic anemia type II (CDA II) is a hypo-productive anemia defined by ineffective erythropoiesis through maturation arrest of erythroid precursors. CDA II is an autosomal recessive disorder due to loss-of-function mutations in SEC23B. Currently, management of patients with CDA II is based on transfusions, splenectomy, or hematopoietic stem-cell transplantation. Several studies have highlighted benefits of ACE-011 (sotatercept) treatment of ineffective erythropoiesis, which acts as a ligand trap against growth differentiation factor (GDF)11. Herein, we show that GDF11 levels are increased in CDA II, which suggests sotatercept as a targeted therapy for treatment of these patients. Treatment of stable clones of SEC23B-silenced erythroleukemia K562 cells with the iron-containing porphyrin hemin plus GDF11 increased expression of pSMAD2 and reduced nuclear localization of the transcription factor GATA1, with subsequent reduced gene expression of erythroid differentiation markers. We demonstrate that treatment of these SEC23B-silenced K562 cells with RAP-011, a "murinized" ortholog of sotatercept, rescues the disease phenotype by restoring gene expression of erythroid markers through inhibition of the phosphorylated SMAD2 pathway. Our data also demonstrate the effect of RAP-011 treatment in reducing the expression of erythroferrone in vitro, thus suggesting a possible beneficial role of the use of sotatercept in the management of iron overload in patients with CDA II.
Project description:Congenital dyserythropoietic anemias (CDAs) constitute a rare group of inherited red-blood-cell disorders associated with dysplastic changes in late erythroid precursors. CDA type I (CDAI [MIM 224120], gene symbol CDAN1) is characterized by erythroid pathological features such as internuclear chromatin bridges, spongy heterochromatin, and invagination of the nuclear membrane, carrying cytoplasmic organelles into the nucleus. A cluster of 45 highly inbred Israeli Bedouin with CDAI enabled the mapping of the CDAN1 disease gene to a 2-Mb interval, now refined to 1.2 Mb, containing 15 candidate genes on human chromosome 15q15 (Tamary et al. 1998). After the characterization and exclusion of 13 of these genes, we identified the CDAN1 gene through 12 different mutations in 9 families with CDAI. This 28-exon gene, which is transcribed ubiquitously into 4738 nt mRNA, was reconstructed on the basis of gene prediction and homology searches. It encodes codanin-1, a putative o-glycosylated protein of 1,226 amino acids, with no obvious transmembrane domains. Codanin-1 has a 150-residue amino-terminal domain with sequence similarity to collagens and two shorter segments that show weak similarities to the microtubule-associated proteins, MAP1B (neuraxin) and synapsin. These findings, and the cellular phenotype, suggest that codanin-1 may be involved in nuclear envelope integrity, conceivably related to microtubule attachments. The specific mechanisms by which codanin-1 underlies normal erythropoiesis remain to be elucidated.
Project description:Congenital dyserythropoietic anemias (CDA) are genetic disorders characterized by anemia and ineffective erythropoiesis. Three main types of CDA have been distinguished: CDA I and CDA III, whose loci have been already mapped, and CDA II (MIM 224100), the most frequent among CDAs, which is transmitted as an autosomal recessive trait and is known also as "HEMPAS" (hereditary erythroblast multinuclearity with positive acidified serum). We have recruited a panel of well-characterized CDA II families and have used them to search for the CDA II gene by linkage analysis. After the exclusion of three candidate genes, we ob-tained conclusive evidence for linkage of CDA II to microsatellite markers on the long arm of chromosome 20 (20q11.2). A maximum two-point LOD score of 5.4 at a recombination fraction of .00 was obtained with marker D20S863. Strong evidence of allelic association with the disease was detected with the same marker. Some recombinational events established a maximum candidate interval of approximately 5 cM.